Nonparametric density estimation for positive time series
نویسندگان
چکیده
The Gaussian kernel density estimator is known to have substantial problems for bounded random variables with high density at the boundaries. For i.i.d. data several solutions have been put forward to solve this boundary problem. In this paper we propose the gamma kernel estimator as density estimator for positive data from a stationary α-mixing process. We derive the mean integrated squared error, almost sure convergence and asymptotic normality. In a Monte Carlo study, where we generate data from an autoregressive conditional duration model and a stochastic volatility model, we find that the gamma kernel outperforms the local linear density estimator. An application to data from financial transaction durations, realized volatility and electricity price data is provided.
منابع مشابه
Spectral Estimation of Stationary Time Series: Recent Developments
Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...
متن کاملNonparametric Estimation for Stationary Processes
We consider the kernel density and regression estimation problem for a wide class of causal processes. Asymptotic normality of the kernel estimators is established under minimal regularity conditions on bandwidths. Optimal uniform error bounds are obtained without imposing strong mixing conditions. The proposed method is based on martingale approximations and provides a unified framework for no...
متن کاملAsymptotic theory for local time density estimation and nonparametric cointegrating regression
Asymptotic theory is developed for local time density estimation for a general class of functionals of integrated time series. The main result provides a convenient basis for developing a limit theory for nonparametric cointegrating regression and nonstationary autoregression. The treatment directly involves local time estimation and the density function of the processes under consideration, pr...
متن کاملNonparametric Estimation in a Stochastic Volatility Model
In this paper we derive nonparametric stochastic volatility models in discrete time. These models generalize parametric autoregressive random variance models, which have been applied quite successfully to financial time series. For the proposed models we investigate nonparametric kernel smoothers. It is seen that so-called nonparametric deconvolution estimators could be applied in this situatio...
متن کاملEstimation of a nonparametric regression spectrum for multivariate time series
Estimation of a nonparametric regression spectrum based on the periodogram is considered. Neither trend estimation nor smoothing of the periodogram are required. Alternatively, for cases where spectral estimation of phase shifts fails and the shift does not depend on frequency, a time domain estimator of the lag-shift is defined. Asymptotic properties of the frequency and time domain estimators...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 54 شماره
صفحات -
تاریخ انتشار 2010