Asymmetric Coulomb fluids at randomly charged dielectric interfaces: anti-fragility, overcharging and charge inversion.
نویسندگان
چکیده
We study the distribution of multivalent counterions next to a dielectric slab, bearing a quenched, random distribution of charges on one of its solution interfaces, with a given mean and variance, both in the absence and in the presence of a bathing monovalent salt solution. We use the previously derived approach based on the dressed multivalent-ion theory that combines aspects of the strong and weak coupling of multivalent and monovalent ions in a single framework. The presence of quenched charge disorder on the charged surface of the dielectric slab is shown to substantially increase the density of multivalent counterions in its vicinity. In the counterion-only model (with no monovalent salt ions), the surface disorder generates an additional logarithmic attraction potential and thus an algebraically singular counterion density profile at the surface. This behavior persists also in the presence of a monovalent salt bath and results in significant violation of the contact-value theorem, reflecting the anti-fragility effects of the disorder that drive the system towards a more "ordered" state. In the presence of an interfacial dielectric discontinuity, depleting the counterion layer at the surface, the charge disorder still generates a much enhanced counterion density further away from the surface. Likewise, the charge inversion and/or overcharging of the surface occur more strongly and at smaller bulk concentrations of multivalent counterions when the surface carries quenched charge disorder. Overall, the presence of quenched surface charge disorder leads to sizable effects in the distribution of multivalent counterions in a wide range of realistic parameters and typically within a distance of a few nanometers from the charged surface.
منابع مشابه
Dressed counterions: polyvalent and monovalent ions at charged dielectric interfaces.
We investigate the ion distribution and overcharging at charged interfaces with dielectric inhomogeneities in the presence of asymmetric electrolytes containing polyvalent and monovalent ions. We formulate an effective "dressed counterion" approach by integrating out the monovalent salt degrees of freedom and show that it agrees with results of explicit Monte Carlo simulations. We then apply th...
متن کاملNumerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection
The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...
متن کاملStrong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk re...
متن کاملDensity functional theory for planar electric double layers: closing the gap between simple and polyelectrolytes.
We report a nonlocal density functional theory (NLDFT) for polyelectrolyte solutions within the primitive model; i.e., the solvent is represented by a continuous dielectric medium, and the small ions and polyions by single and tangentially connected charged hard spheres, respectively. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for hard-sphere re...
متن کاملOvercharging : The crucial role of excluded volume
– In this Letter we investigate the mechanism for overcharging of a single spherical colloid in the presence of aqueous salts within the framework of the primitive model by molecular dynamics (MD) simulations as well as integral-equation theory. We find that the occurrence and strength of overcharging strongly depends on the salt-ion size, and the available volume in the fluid. To understand th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 141 17 شماره
صفحات -
تاریخ انتشار 2014