Centrifugation assisted microreactor enables facile integration of trypsin digestion, hydrophilic interaction chromatography enrichment, and on-column deglycosylation for rapid and sensitive N-glycoproteome analysis.
نویسندگان
چکیده
Sample handling procedures including protein digestion, glycopeptide enrichment, and deglycosylation have significant impact on the performance of glycoproteome analysis. Several glycoproteomic analysis systems were developed to integrate some of these sample preparation procedures. However, no microsystem integrates all of above three procedures together. In this work, we developed a glycoproteomic microreactor enabling seamless integration of all these procedures. In this reactor, trypsin digestion was accelerated by adding acetonitrile to 80%, and after acidification of protein digest by trifluoroacetic acid (TFA), the following hydrophilic interaction chromatography (HILIC) enrichment and deglycosylation were sequentially performed without any desalting, lyophilization, or buffer exchange steps. The total processing time could be as short as 1.5 h. The detection limit of human IgG as low as 30 fmol was also achieved. When applied to human serum glycoproteome analysis, a total number of 92, 178, and 221 unique N-glycosylation sites were identified from three replicate analyses of 10 nL, 100 nL, and 1 μL of human serum, respectively. It was demonstrated that the glycoproteomic microreactor based method had very high sensitivity and was well suited for glycoproteome analysis of minute protein samples.
منابع مشابه
On-chip microextraction for proteomic sample preparation of in-gel digests.
Despite the high sensitivity and relatively high tolerance for contaminants of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) there is often a need to purify and concentrate the sample solution, especially after in-gel digestion of proteins separated by two-dimensional gel electrophoresis (2-DE). A silicon microextraction chip (SMEC) for sample clean...
متن کاملA Comparative Study of Lectin Affinity Based Plant N-Glycoproteome Profiling Using Tomato Fruit as a Model*□S
Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with different affinities can be particularly effective. A multi-lectin approach has also been reported to p...
متن کاملRapid protein digestion and identification using monolithic enzymatic microreactor coupled with nano-liquid chromatography-electrospray ionization mass spectrometry.
A novel monolithic enzymatic microreactor was prepared in the fused-silica capillary by in situ polymerization of acrylamide (AA), N-acryloxysuccinimide (NAS) and ethylene dimethacrylate (EDMA) in the presence of a binary porogenic mixture of dodecanol and cyclohexanol, which could offer very low back pressure, enabling the fast digestion of proteins. The performance of the monolithic microreac...
متن کاملHighly Selective Enrichment of Glycopeptides Based on Zwitterionically Functionalized Soluble Nanopolymers
Efficient glycopeptides enrichment prior to mass spectrometry analysis is essential for glycoproteome study. ZIC-HILIC (zwitterionic hydrophilic interaction liquid chromatography) based glycopeptides enrichment approaches have been attracting more attention for several benefits like easy operating, high enrichment specificity and intact glycopeptide retained. In this study, Poly (amidoamine) de...
متن کاملIntegrated protein analysis platform based on column switch recycling size exclusion chromatography, microenzymatic reactor and microRPLC-ESI-MS/MS.
An integrated platform with the combination of proteins and peptides separation was established via the unit of on-line proteins digestion, by which proteins were in sequence separated by column switch recycling size exclusion chromatography (csrSEC), on-line digested by an immobilized trypsin microreactor, trapped and desalted by two parallel C8 precolumns, separated by microRPLC with the line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 84 11 شماره
صفحات -
تاریخ انتشار 2012