Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst.
نویسندگان
چکیده
Recently, methane has attracted much attention as an alternative carbon feedstock since it is the major component of abundant shale and natural gas. In this work, we produced methanol from methane using whole cells of Methylosinus trichosporium OB3b as the biocatalyst. M. trichosporium OB3b was cultured on NMS medium with a supply of 7:3 air/methane ratio at 30°C. The optimal concentrations of various methanol dehydrogenase inhibitors such as potassium phosphate and EDTA were determined to be 100 and 0.5 mM, respectively, for an efficient production of methanol. Sodium formate (40 mM) as a reducing power source was added to enhance the conversion efficiency. A productivity of 49.0 mg/l·h, titer of 0.393 g methanol/l, and conversion of 73.8% (mol methanol/mol methane) were obtained under the optimized batch condition.
منابع مشابه
Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b.
It is well known that Methylosinus trichosporium OB3b has two forms of methane monooxygenase (MMO) responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase and a membrane-associated (particulate) methane monooxygenase, and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M....
متن کاملAnalysis of methane biodegradation by Methylosinus trichosporium OB3b
The microbial oxidation of methane in the atmosphere is performed by methanotrophic bacteria that use methane as a unique source of carbon and energy. The objective of this work consisted of the investigation of the best conditions of methane biodegradation by methanotrophic bacteria Methylosinus trichosporium OB3b that oxidize it to carbon dioxide, and the use of these microorganisms in monito...
متن کاملMethanol promotes atmospheric methane oxidation by methanotrophic cultures and soils.
Two methanotrophic bacteria, Methylobacter albus BG8 and Methylosinus trichosporium OB3b, oxidized atmospheric methane during batch growth on methanol. Methane consumption was rapidly and substantially diminished (95% over 9 days) when washed cell suspensions were incubated without methanol in the presence of atmospheric methane (1.7 ppm). Methanotrophic activity was stimulated after methanol (...
متن کاملThe soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M.
In methanotrophic bacteria, methane is oxidized to methanol by the enzyme methane monooxygenase (MMO). The soluble MMO enzyme complex from Methylocystis sp. strain M also oxidizes a wide range of aliphatic and aromatic compounds, including trichloroethylene. In this study, heterologous DNA probes from the type II methanotroph Methylosinus trichosporium OB3b were used to isolate souble MMO (sMMO...
متن کاملNADH-Regulated metabolic model for growth of Methylosinus trichosporium OB3b. Model presentation, parameter estimation, and model validation.
A biochemical model is presented that describes growth of Methylosinus trichosporium OB3b on methane. The model, which was developed to compare strategies to alleviate NADH limitation resulting from cometabolic contaminant conversion, includes (1) catabolism of methane via methanol, formaldehyde, and formate to carbon dioxide; (2) growth as formaldehyde assimilation; and (3) storage material (p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of microbiology and biotechnology
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2015