The speed of biased random walk on percolation clusters

نویسندگان

  • Noam Berger
  • Nina Gantert
  • Yuval Peres
چکیده

We consider biased random walk on supercritical percolation clusters in Z. We show that the random walk is transient and that there are two speed regimes: If the bias is large enough, the random walk has speed zero, while if the bias is small enough, the speed of the random walk is positive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the speed of biased random walk in translation invariant percolation

For biased random walk on the infinite cluster in supercritical i.i.d. percolation on Z, where the bias of the walk is quantified by a parameter β > 1, it has been conjectured (and partly proved) that there exists a critical value βc > 1 such that the walk has positive speed when β < βc and speed zero when β > βc. In this paper, biased random walk on the infinite cluster of a certain translatio...

متن کامل

Percolation Perturbations in Potential Theory and Random Walks

We show that on a Cayley graph of a nonamenable group, a.s. the infinite clusters of Bernoulli percolation are transient for simple random walk, that simple random walk on these clusters has positive speed, and that these clusters admit bounded harmonic functions. A principal new finding on which these results are based is that such clusters admit invariant random subgraphs with positive isoper...

متن کامل

The Speed of Simple Random Walk and Anchored Expansion on Percolation Clusters: an Overview

Benjamini, Lyons and Schramm (1999) considered properties of an infinite graph G, and the simple random walk on it, that are preserved by random perturbations. To address problems raised by those authors, we study simple random walk on the infinite percolation cluster in Cayley graphs of certain amenable groups known as “lamplighter groups”. We prove that zero speed for random walk on a lamplig...

متن کامل

Random Walk Delayed on Percolation Clusters

We study a continuous-time random walk on the d-dimensional lattice, subject to a drift and an attraction to large clusters of a subcritical Bernoulli site percolation. We find two distinct regimes: a ballistic one, and a subballistic one taking place when the attraction is strong enough. We identify the speed in the former case, and the algebraic rate of escape in the latter case. Finally, we ...

متن کامل

On the Eigenspaces of Lamplighter Random Walks and Percolation Clusters on Graphs

We show that the Plancherel measure of the lamplighter random walk on a graph coincides with the expected spectral measure of the absorbing random walk on the Bernoulli percolation clusters. In the subcritical regime the spectrum is pure point and we construct a complete set of finitely supported eigenfunctions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990