Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory

نویسنده

  • Martial AGUEH
چکیده

Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Abstract We obtain solutions of the nonlinear degenerate parabolic equation ∂ ρ ∂ t = div ρ ∇c ⋆ [ ∇ (F ′ (ρ) + V) ] as a steepest descent of an energy with respect to a convex cost functional. The method used here is variational. It requires less uniform convexity assumption than that imposed by Alt and Luckhaus in their pioneering work [3]. In fact, their assumption may fail in our equation. This class of problems includes the Fokker-Planck equation, the porous-medium equation, the fast diffusion equation, and the parabolic p-Laplacian equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational principle for general diffusion problems

We employ the Monge-Kantorovich mass transfer theory to study existence of solutions for a large class of parabolic partial differential equations. We deal with non-homogeneous nonlinear diffusion problems (of Fokker-Planck type) with time dependent coefficients. This work greatly extends the applicability of known techniques based on constructing weak solutions by approximation with time-inter...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Solutions to Monge-Kantorovich equations as stationary points of a dynamical system

Solutions to Monge-Kantorovich equations, expressing optimality condition in mass transportation problem with cost equal to distance, are stationary points of a critical-slope model for sand surface evolution. Using a dual variational formulation of sand model, we compute both the optimal transport density and Kantorovich potential as t → ∞ limit of evolving sand flux and sand surface, respecti...

متن کامل

Existence and multiplicity of positive solutions for singular‎ ‎Monge-Amp‎‎$‎rmgrave{e}‎$re system

Using the fixed point theorem in a‎ ‎cone‎, ‎the existence and multiplicity of radial convex solutions of‎ ‎singular system of Monge-Amp`{e}re equations are established‎.‎

متن کامل

Normal forms for parabolic Monge-Ampère equations

We find normal forms for parabolic Monge-Ampère equations. Of these, the most general one holds for any equation admitting a complete integral. Moreover, we explicitly give the determining equation for such integrals; restricted to the analytic case, this equation is shown to have solutions. The other normal forms exhaust the different classes of parabolic Monge-Ampère equations with symmetry p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003