The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary.
نویسندگان
چکیده
The Drosophila ovary is an excellent system with which to study germline stem cell (GSC) biology. Two or three female GSCs are maintained in a structure called a niche at the anterior tip of the ovary. The somatic niche cells surrounding the GSCs include terminal filament cells, cap cells and escort stem cells. Mounting evidence has demonstrated that BMP-like morphogens are the immediate upstream signals to promote GSC fate by preventing the expression of Bam, a key differentiation factor. In contrast to their morphogenic long-range action in imaginal epithelia, BMP molecules in the ovarian niche specify GSC fate at single-cell resolution. How this steep gradient of BMP response is achieved remains elusive. In this study, we found that the glypican Dally is essential for maintaining GSC identity. Dally is highly expressed in cap cells. Cell-specific Dally-RNAi, mutant clonal analysis and cell-specific rescue of the GSC-loss phenotype suggest that Dally acts in the cap cells adjacent to the GSCs. We confirmed that Dally facilitated BMP signaling in GSCs by examining its downstream targets in various dally mutants. Conversely, when we overexpressed Dally in somatic cells outside the niche, we increased the number of GSC-like cells apparently by expanding the pro-GSC microenvironment. Furthermore, in a genetic setting we revealed a BMP-sensitivity distinction between germline and somatic cells, namely that Dally is required for short-range BMP signaling in germline but not in somatic cells. We propose that Dally ensures high-level BMP signaling in the ovarian niche and thus female GSC determination.
منابع مشابه
Drosophila glypicans regulate the germline stem cell niche
Stem cells are maintained in vivo by short-range signaling systems in specialized microenvironments called niches, but the molecular mechanisms controlling the physical space of the stem cell niche are poorly understood. In this study, we report that heparan sulfate (HS) proteoglycans (HSPGs) are essential regulators of the germline stem cell (GSC) niches in the Drosophila melanogaster gonads. ...
متن کاملBmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary.
The Drosophila ovary is an attractive system to study how niches control stem cell self-renewal and differentiation. The niche for germline stem cells (GSCs) provides a Dpp/Bmp signal, which is essential for GSC maintenance. bam is both necessary and sufficient for the differentiation of immediate GSC daughters, cystoblasts. Here we show that Bmp signals directly repress bam transcription in GS...
متن کاملWnt6 maintains anterior escort cells as an integral component of the germline stem cell niche
Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. ...
متن کاملBMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary.
BMP signaling is essential for promoting self-renewal of mouse embryonic stem cells and Drosophila germline stem cells and for repressing stem cell proliferation in the mouse intestine and skin. However, it remains unknown whether BMP signaling can promote self-renewal of adult somatic stem cells. In this study, we show that BMP signaling is necessary and sufficient for promoting self-renewal a...
متن کاملNotch signaling controls germline stem cell niche formation in the Drosophila ovary.
Stem cells, which can self-renew and generate differentiated cells, have been shown to be controlled by surrounding microenvironments or niches in several adult tissues. However, it remains largely unknown what constitutes a functional niche and how niche formation is controlled. In the Drosophila ovary, germline stem cells (GSCs), which are adjacent to cap cells and two other cell types, have ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 136 21 شماره
صفحات -
تاریخ انتشار 2009