Adaptive sparse system identification using normalized least mean fourth algorithm
نویسندگان
چکیده
Normalized least mean square (NLMS) was considered as one of the classical adaptive system identification algorithms. Because most of systems are often modeled as sparse, sparse NLMS algorithm was also applied to improve identification performance by taking the advantage of system sparsity. However, identification performances of NLMS type algorithms cannot achieve high-identification performance, especially in low signal-to-noise ratio regime. It was well known that least mean fourth (LMF) can achieve highidentification performance by utilizing fourth-order identification error updating rather than second-order. However, the main drawback of LMF is its instability and it cannot be applied to adaptive sparse system identifications. In this paper, we propose a stable sparse normalized LMF algorithm to exploit the sparse structure information to improve identification performance. Its stability is shown to be equivalent to sparse NLMS type algorithm. Simulation results show that the proposed normalized LMF algorithm can achieve better identification performance than sparse NLMS one. Copyright © 2013 John Wiley & Sons, Ltd.
منابع مشابه
Sparse least mean fourth filter with zero-attracting ℓ1-norm constraint
Traditional stable adaptive filter was used normalized least-mean square (NLMS) algorithm. However, identification performance of the traditional filter was especially vulnerable to degradation in low signal-noise-ratio (SRN) regime. Recently, adaptive filter using normalized least-mean fourth (NLMF) is attracting attention in adaptive system identifications (ASI) due to its high identification...
متن کاملSparse LMS/F algorithms with application to adaptive system identification
Standard least mean square/fourth (LMS/F) is a classical adaptive algorithm that combined the advantages of both least mean square (LMS) and least mean fourth (LMF). The advantage of LMS is fast convergence speed while its shortcoming is suboptimal solution in low signal-to-noise ratio (SNR) environment. On the contrary, the advantage of LMF algorithm is robust in low SNR while its drawback is ...
متن کاملThe Krylov-proportionate normalized least mean fourth approach: Formulation and performance analysis
We propose novel adaptive filtering algorithms based on the mean-fourth error objective while providing further improvements on the convergence performance through proportionate update. We exploit the sparsity of the system in the mean-fourth error framework through the proportionate normalized least mean fourth (PNLMF) algorithm. In order to broaden the applicability of the PNLMF algorithm to ...
متن کاملAdaptive Sparse Channel Estimation Methods for Time-Variant MIMO Communication Systems
Channel estimation problem is one of key technical issues in time-variant multiple-input multiple-output (MIMO) communication systems. To estimate the MIMO channel, least mean square (LMS) algorithm was applied to adaptive channel estimation (ACE). Since the MIMO channel is often described by sparse channel model, such sparsity could be exploited and then estimation performance could be improve...
متن کاملA Family of Variable Step-Size Normalized Subband Adaptive Filter Algorithms Using Statistics of System Impulse Response
This paper presents a new variable step-size normalized subband adaptive filter (VSS-NSAF) algorithm. The proposed algorithm uses the prior knowledge of the system impulse response statistics and the optimal step-size vector is obtained by minimizing the mean-square deviation(MSD). In comparison with NSAF, the VSS-NSAF algorithm has faster convergence speed and lower MSD. To reduce the computa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Communication Systems
دوره 28 شماره
صفحات -
تاریخ انتشار 2015