Canonical Quantisation in n.A=0 gauges

نویسنده

  • P V Landshoff
چکیده

We give a unified derivation of the propagator in the gauges n.A = 0 for n timelike, spacelike or lightlike. We discuss the physical states and other physical questions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson-Lie Structures and Quantisation with Constraints

We develop here a simple quantisation formalism that make use of Lie algebra properties of the Poisson bracket. When the brackets {H,φi} and {φi, φj}, where H is the Hamiltonian and φi are primary and secondary constraints, can be expressed as functions of H and φi themselves, the Poisson bracket defines a Poisson-Lie structure. When this algebra has a finite dimension a system of first order p...

متن کامل

Quantisation, Representation and Reduction; How Should We Interpret the Quantum Hamiltonian Constraints of Canonical Gravity?

Hamiltonian constraints feature in the canonical formulation of general relativity. Unlike typical constraints they cannot be associated with a reduction procedure leading to a non-trivial reduced phase space and this means the physical interpretation of their quantum analogues is ambiguous. In particular, can we assume that “quantisation commutes with reduction” and treat the promotion of thes...

متن کامل

0 50 20 03 v 2 1 3 Ju n 20 05 Noncommutative Configuration Space . Classical and Quantum Mechanical Aspects ∗

In this work we examine noncommutativity of position coordinates in classical symplectic mechanics and its quantisation. In coordinates {q i , p k } the canonical symplectic two-form is ω 0 = dq i ∧ dp i. It is well known in symplectic mechanics [5, 6, 9] that the interaction of a charged particle with a magnetic field can be described in a Hamil-tonian formalism without a choice of a potential...

متن کامل

1 Notations

I am using the same notations as in [3] and [2]. 2 Temporal gauge-various approaches Obviously the temporal gauge ¯ q i = a i = const or in QED: A 0 = a ∈ R (1) is not a canonical gauge as it does not fulfill eq. (1.59) of [7]. However, we do not need a canonical gauge in order to fix our gauge degrees of freedom. There exist various other gauges (e.g. derivative gauges, multiplier gauges etc.)...

متن کامل

hep-th/9512146 CANONICAL GAUGES IN THE PATH INTEGRAL FOR PARAMETRIZED SYSTEMS

It is well known that –differing from ordinary gauge systems– canonical gauges are not admissible in the path integral for parametrized systems. This is the case for the relativistic particle and gravitation. However, a time dependent canonical transformation can turn a parametrized system into an ordinary gauge system. It is shown how to build a canonical transformation such that the fixation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993