Signal Trajectory Based Noise Compensation for Robust Speech Recognition

نویسندگان

  • Zhi-Jie Yan
  • Jian-Lai Zhou
  • Frank K. Soong
  • Ren-Hua Wang
چکیده

This paper presents a novel signal trajectory based noise compensation algorithm for robust speech recognition. Its performance is evaluated on the Aurora 2 database. The algorithm consists of two processing stages: 1) noise spectrum is estimated using trajectory autosegmentation and clustering, so that spectral subtraction can be performed to roughly estimate the clean speech trajectories; 2) these trajectories are regenerated using trajectory HMMs, where the constraint between static and dynamic spectral information is imposed to refine the noise subtracted trajectories both in “level” and “shape”. Experimental results show that the recognition performance after spectral subtraction is improved with or without trajectory regeneration, but the HMM regenerated trajectories yields the best performance improvement. After spectral subtraction, the average relative error rate reductions of clean and multi-condition training are 23.21% and 5.58%, respectively. And the proposed trajectory regeneration algorithm further improves them to 42.59% and 15.80%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه

Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

A robust RNN-based pre-classification for noisy Mandarin speech recognition

This paper addressed the problem of speech signal preclassification for robust noisy speech recognition. A novel RNN-based pre-classification scheme for noisy Mandarin speech recognition is proposed. The RNN, which is trained to be insensitive to noise-level variation, is employed to classify each input frame into the three broad classes of initial, final and pure-noise. An on-line noise tracki...

متن کامل

A robust training algorithm for adverse speech recognition

In this paper, a new robust training algorithm is proposed for the generation of a set of bias-removed, noise-suppressed reference speech HMM models in adverse environment su€ering from both channel bias and additive noise. Its main idea is to incorporate a signal bias-compensation operation and a PMC noise-compensation operation into its iterative training process. This makes the resulting spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006