An Improved Supervised Learning Algorithm Using Triplet-Based Spike-Timing-Dependent Plasticity
نویسندگان
چکیده
The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit arbitrary spike trains in response to given synaptic inputs. Recent years, the supervised learning algorithms based on synaptic plasticity have developed rapidly. As one of the most efficient supervised learning algorithms, the remote supervised method (ReSuMe) uses the conventional pair-based spike-timing-dependent plasticity rule, which depends on the precise timing of presynaptic and postsynaptic spikes. In this paper, using the triplet-based spike-timing-dependent plasticity, which is a powerful synaptic plasticity rule and acts beyond the classical rule, a novel supervised learning algorithm, dubbed T-ReSuMe, is presented to improve ReSuMe’s performance. The proposed algorithm is successfully applied to various spike trains learning tasks, in which the desired spike trains are encoded by Poisson process. The experimental results show that T-ReSuMe has higher learning accuracy and fewer iteration epoches than the traditional ReSuMe, so it is effective for solving complex spatio-temporal pattern learning problems.
منابع مشابه
Optimal Spike-Timing Dependent Plasticity for Precise Action Potential Firing in Supervised Learing
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes via gradient ascent the likelihood of postsynaptic firing at one or several desired firing times. We find that the optimal strategy of up and down regulating synaptic efficacies depends on the relative timing betwe...
متن کاملOptimal Spike-Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised Learning
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or several desired firing times. We find that the optimal strategy of up- and downregulating synaptic efficacies depends on the relative timing betwee...
متن کاملA neuromorphic VLSI design for spike timing and rate based synaptic plasticity
Triplet-based Spike Timing Dependent Plasticity (TSTDP) is a powerful synaptic plasticity rule that acts beyond conventional pair-based STDP (PSTDP). Here, the TSTDP is capable of reproducing the outcomes from a variety of biological experiments, while the PSTDP rule fails to reproduce them. Additionally, it has been shown that the behaviour inherent to the spike rate-based Bienenstock-Cooper-M...
متن کاملTriplets of spikes in a model of spike timing-dependent plasticity.
Classical experiments on spike timing-dependent plasticity (STDP) use a protocol based on pairs of presynaptic and postsynaptic spikes repeated at a given frequency to induce synaptic potentiation or depression. Therefore, standard STDP models have expressed the weight change as a function of pairs of presynaptic and postsynaptic spike. Unfortunately, those paired-based STDP models cannot accou...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کامل