Scopolamine Impairs Appetitive But Not Aversive Trace Conditioning: Role of the Medial Prefrontal Cortex
نویسندگان
چکیده
The muscarinic acetylcholine receptor is an important modulator of medial prefrontal cortex (mPFC) functions, such as the working memory required to bridge a trace interval in associative leaning. Aversive and appetitive trace conditioning procedures were used to examine the effects of scopolamine (0.1 and 0.5 mg/kg, i.p.) in male rats. Follow-up experiments tested the effects of microinfusion of 0.15 μg of scopolamine (0.075 μg of in 0.5 μl/side) in infralimbic (IL) versus prelimbic regions of rat mPFC, in appetitive trace and locomotor activity (LMA) procedures. Systemic scopolamine was without effect in an aversive trace conditioning procedure, but impaired appetitive conditioning at a 2 s trace interval. This effect was demonstrated as reduced responding during presentations of the conditioned stimulus (CS) and during the interstimulus interval (ISI). There was no such effect on responding during food (unconditioned stimulus, US) responding or in the intertrial interval (ITI). In contrast, systemic scopolamine dose-relatedly increased LMA. Trace conditioning was similarly impaired at the 2 s trace (shown as reduced responding to the CS and during the ISI, but not during US presentations or in the ITI) after infusion in mPFC, whereas LMA was increased (after infusion in IL only). Therefore, our results point to the importance of cholinergic modulation in mPFC for trace conditioning and show that the observed effects cannot be attributed to reduced activity.SIGNIFICANCE STATEMENT Events are very often separated in time, in which case working memory is necessary to condition their association in "trace conditioning." The present study used conditioning variants motivated aversively with foot shock and appetitively with food. The drug scopolamine was used to block muscarinic acetylcholine receptors involved in working memory. The results show that reduced cholinergic transmission in medial prefrontal cortex (mPFC) impaired appetitive trace conditioning at a 2 s trace interval. However, scopolamine was without effect in the aversive procedure, revealing the importance of procedural differences to the demonstration of the drug effect. The finding that blockade of muscarinic receptors in mPFC impaired trace conditioning shows that these receptors are critical modulators of short-term working memory.
منابع مشابه
Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex.
The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a conditional stimulus (CS) and an aversive unconditional...
متن کاملAppetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making.
An essential feature of choice is the assignment of goal values (GVs) to the different options under consideration at the time of decision making. This computation is done when choosing among appetitive and aversive items. Several groups have studied the location of GV computations for appetitive stimuli, but the problem of valuation in aversive contexts at the time of decision making has been ...
متن کاملDistinct Traces for Appetitive versus Aversive Olfactory Memories in DPM Neurons of Drosophila
The global logic used by the brain for differentially encoding positive and negative experiences remains unknown along with how such experiences are represented by collections of memory traces at the cellular level. Here we contrast the cellular memory traces that form in the dorsal paired medial (DPM) neurons of Drosophila after conditioning flies with odors associated with aversive or appetit...
متن کاملPrefrontal Norepinephrine Determines Attribution of “High” Motivational Salience
Intense motivational salience attribution is considered to have a major role in the development of different psychopathologies. Numerous brain areas are involved in "normal" motivational salience attribution processes; however, it is not clear whether common or different neural mechanisms also underlie intense motivational salience attribution. To elucidate this a brain area and a neural system...
متن کاملThe medial orbitofrontal cortex encodes a general unsigned value signal during anticipation of both appetitive and aversive events.
The medial orbitofrontal cortex (mOFC)/ventromedial prefrontal cortex (vmPFC) has been proposed to signal the expected value of rewards when learning stimuli-rewards associations. Yet, it is still unclear whether identical or distinct orbitofrontal cortex regions encode expected rewards and punishments at the time of the cue during appetitive and aversive classical conditioning. Moreover, it is...
متن کامل