On magnetic plucking configurations for frequency up-converting mechanical energy harvesters
نویسندگان
چکیده
Magnetic plucking applies the strategy of frequency up-conversion in inertial energy harvesting when the energy source, such as human motion, provides excitations with very low and irregular frequencies. In a typical implementation, a slower moving inertial mass magnetically plucks a piezoelectric cantilever beam which converts mechanical energy to electrical energy at a higher frequency. We categorize several feasible magnet configurations to achieve plucking. We classify these as either in-plane (the beam is deflected in the plane of proof mass motion) or out-of-plane (the beam is deflected orthogonal to the plane of proof mass motion). Whereas in-plane plucking induces a clean ring down due to its inherent jump phenomenon, out-of-plane plucking enables the capability of fabricating multiple piezoelectric beams on a single substrate. This paper presents an analysis of three different out-of-plane plucking agnetic plucking iezoelectric earables configurations along with the in-plane repulsive configuration based on a three-dimensional analytical cube permanent magnet model. We derive a magnetically plucked piezoelectric beam model to investigate the dynamic characteristic for different plucking configurations. After validating the model with experimental results we extend the simulation into a larger driving frequency domain to compare two types of magnet configurations in terms of power generation. © 2016 Elsevier B.V. All rights reserved.
منابع مشابه
Analysis of Magnetic Plucking Configurations for Frequency Up-Converting Harvesters
Magnetic plucking applies the strategy of frequency up-conversion in inertial energy harvesting when the energy source, such as human motion, only provides excitations with very low and irregular frequencies. This paper presents an analysis of three different magnet configurations to achieve magnetic plucking based on a three-dimensional analytical cube permanent magnet model: direct repulsive ...
متن کاملStudying piezoelastic and piezomagnetoelastic configurations for different excitation frequencies in MEMS energy harvesters
Typically two configurations are used for energy harvesting with different advantages: piezoelastic and piezomagnetoelastic. Best performance of the piezoelastic configuration is when the excitation frequency is close to the resonance frequency. If the input frequency slightly deviates from the natural frequency, the generated power is severely decreased. To tackle the problem, the piezomagneto...
متن کاملEnergy harvesting from low frequency applications using piezoelectric materials
Articles you may be interested in Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation Appl. Energy harvesting from ambient low-frequency magnetic field using magneto-mechano-electric composite cantilever Appl. Frequency up-converted wide bandwidth piezoelectric energy harvester using mechanical impact Nonlinear output properties of c...
متن کاملA methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion
Energy harvesting from vibration for low-power electronics has been investigated intensively in recent years, but rotational energy harvesting is less investigated and still has some challenges. In this paper, a methodology for low-speed rotational energy harvesting using piezoelectric transduction and frequency up-conversion is analysed. The system consists of a piezoelectric cantilever beamwi...
متن کاملPerformance analysis of frequency up-converting energy harvesters for human locomotion [8341-1]
Energy harvesting from human locomotion is a challenging problem because the low frequencies involved are incompatible with small, light-weight transducers. Furthermore, frequency variations during changing levels of activity greatly reduce the effectiveness of tuned resonant devices. This paper presents the performance analysis and parameter study of energy harvesters utilizing magnetic intera...
متن کامل