Finite - time future singularities in modified Gauss - Bonnet and F ( R , G ) gravity and singularity avoidance

نویسندگان

  • Kazuharu Bamba
  • Sergei D. Odintsov
  • Lorenzo Sebastiani
  • Sergio Zerbini
چکیده

We study all four types of finite-time future singularities emerging in late-time accelerating (effective quintessence/phantom) era from F(R,G)-gravity, where R and G are the Ricci scalar and the Gauss-Bonnet invariant, respectively. As an explicit example of F(R,G)-gravity, we also investigate modified Gauss-Bonnet gravity, so-called F (G)-gravity. In particular, we reconstruct the F (G)-gravity and F(R,G)-gravity models where accelerating cosmologies realizing the finite-time future singularities emerge. Furthermore, we discuss a possible way to cure the finite-time future singularities in F (G)-gravity and F(R,G)-gravity by taking into account higher-order curvature corrections. The example of non-singular realistic modified Gauss-Bonnet gravity is presented. It turns out that adding such non-singular modified gravity to singular Dark Energy makes the combined theory to be non-singular one as well. PACS numbers: 04.50.Kd, 11.25.-w, 95.36.+x, 98.80.-k ∗ E-mail address: [email protected] † Also at Tomsk State Pedagogical University. E-mail address: [email protected] ‡ E-mail address: [email protected] § E-mail address: [email protected] 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase space of modified Gauss–Bonnet gravity

We investigate the evolution of non-vacuum Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss-Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within thes...

متن کامل

ar X iv : 0 90 6 . 07 13 v 1 [ he p - th ] 3 J un 2 00 9 Non - minimal Maxwell - Modified Gauss - Bonnet Cosmologies : Inflation and Dark Energy

In this paper we show that power-law inflation can be realized in non-minimal gravitational coupling of electromagnetic field with a general function of Gauss-Bonnet invariant. Such a non-minimal coupling may appear due to quantum corrections. We also consider modified Maxwell-F (G) gravity in which non-minimal coupling between electromagnetic field and f (G) occur in the framework of modified ...

متن کامل

سیاه‌چاله‌های نظریه گوس- بونه در حضور شاره کامل

In this paper, the solutions of the Gauss-Bonnet theory of gravity was proposed in the presence of a perfect fluid with thermodynamic pressure P and energy gravity ρ in n-dimension. Accordingly, perfect fluid tensor was regarded as energy-momentum tensor and the static and radiating solutions for the linear equation of state p = wρ was calculated. This solution contains all the solutions alread...

متن کامل

NUT-Charged Black Holes in Gauss-Bonnet Gravity

We investigate the existence of Taub-NUT/bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r = N , there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter α goes to zero. Fur...

متن کامل

Mathematical Proceedings of the Cambridge Philosophical Society

We study Einstein metrics on smooth compact 4-manifolds with an edge-cone singularity of specified cone angle along an embedded 2-manifold. To do so, we first derive modified versions of the Gauss–Bonnet and signature theorems for arbitrary Riemannian 4-manifolds with edge-cone singularities, and then show that these yield non-trivial obstructions in the Einstein case. We then use these integra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010