Constructing statistically unbiased cortical surface templates using feature-space covariance

نویسندگان

  • Prasanna Parvathaneni
  • Ilwoo Lyu
  • Yuankai Huo
  • Justin A. Blaber
  • Allison E. Hainline
  • Hakmook Kang
  • Neil D. Woodward
  • Bennett A. Landman
چکیده

The choice of surface template plays an important role in cross-sectional subject analyses involving cortical brain surfaces because there is a tendency toward registration bias given variations in inter-individual and inter-group sulcal and gyral patterns. In order to account for the bias and spatial smoothing, we propose a feature-based unbiased average template surface. In contrast to prior approaches, we factor in the sample population covariance and assign weights based on feature information to minimize the influence of covariance in the sampled population. The mean surface is computed by applying the weights obtained from an inverse covariance matrix, which guarantees that multiple representations from similar groups (e.g., involving imaging, demographic, diagnosis information) are down-weighted to yield an unbiased mean in feature space. Results are validated by applying this approach in two different applications. For evaluation, the proposed unbiased weighted surface mean is compared with un-weighted means both qualitatively and quantitatively (mean squared error and absolute relative distance of both the means with baseline). In first application, we validated the stability of the proposed optimal mean on a scan-rescan reproducibility dataset by incrementally adding duplicate subjects. In the second application, we used clinical research data to evaluate the difference between the weighted and unweighted mean when different number of subjects were included in control versus schizophrenia groups. In both cases, the proposed method achieved greater stability that indicated reduced impacts of sampling bias. The weighted mean is built based on covariance information in feature space as opposed to spatial location, thus making this a generic approach to be applicable to any feature of interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Label Classification Using Dependent and Independent Dual Space Reduction

While multi-label classification can be widely applied for problems where multiple classes can be assigned to an object, its effectiveness may be sacrificed due to curse of dimensionality in the feature space and sparseness of dimensionality in the label space. As a solution, this paper presents two alternative methods, namely Dependent Dual Space Reduction and Independent Dual Space Reduction,...

متن کامل

Construction of a fetal spatio-temporal cortical surface atlas from in utero MRI: Application of spectral surface matching

In this study, we construct a spatio-temporal surface atlas of the developing cerebral cortex, which is an important tool for analysing and understanding normal and abnormal cortical development. In utero Magnetic Resonance Imaging (MRI) of 80 healthy fetuses was performed, with a gestational age range of 21.7 to 38.9 weeks. Topologically correct cortical surface models were extracted from reco...

متن کامل

Construction of 4D high-definition cortical surface atlases of infants: Methods and applications

In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional deve...

متن کامل

Diagonalization of time-delayed covariance matrices does not guarantee statistical independence in high-dimensional feature space

Independent Slow Feature Analysis (ISFA) is an algorithm for performing nonlinear blind source separation, which combines linear ICA with Slow Feature Analysis (SFA). In its current form the objective function is based on time-delayed covariance matrices. While the algorithm performs well in general, we occasionally encountered cases in which the estimated sources are highly statistically depen...

متن کامل

Variance decomposition of MRI-based covariance maps using genetically informative samples and structural equation modeling

The role of genetics in driving intracortical relationships is an important question that has rarely been studied in humans. In particular, there are no extant high-resolution imaging studies on genetic covariance. In this article, we describe a novel method that combines classical quantitative genetic methodologies for variance decomposition with recently developed semi-multivariate algorithms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018