The influence of INK4 proteins on growth and self-renewal kinetics of hematopoietic progenitor cells.
نویسندگان
چکیده
This study investigated the influence of expression of proteins of the INK4 family, particularly p16, on the growth and self-renewal kinetics of hematopoietic cells. First, retrovirus-mediated gene transfer (RMGT) was used to restore p16(INK4a) expression in the p16(INK4a)-deficient lymphoid and myeloid cell lines BV173 and K562, and it was confirmed that this inhibited their growth. Second, to sequester p16(INK4a) and related INK4 proteins, cyclin-dependent kinase 4 (CDK4) was retrovirally transduced into normal human CD34(+) bone marrow cells and then cultured in myeloid colony-forming cell (CFC) assays. The growth of CDK4-transduced colonies was more rapid; the cell-doubling time was reduced; and, upon replating, the colonies produced greater yields of secondary colonies than mock-untransduced controls. Third, colony formation was compared by marrow cells from p16(INK4a-/-) mice and wild-type mice. The results from p16(INK4a-/-) marrow were similar to those from CDK4-transduced human CFCs, in terms of growth rate and replating ability, and were partially reversed by RMGT of p16(INK4a). Lines of immature granulocytic cells were raised from 15 individual colonies grown from the marrow of p16(INK4a-/-) mice. These had a high colony-forming ability (15%) and replating efficiency (96.7%). The p16(INK4a-/-) cell lines readily became growth factor-independent upon cytokine deprivation. Taken together, these results demonstrate that loss of INK4 proteins, in particular p16(INK4a), increases the growth rate of myeloid colonies in vitro and, more importantly, confers an increased ability for clonal expansion on hematopoietic progenitor cells.
منابع مشابه
سلولهای بنیادی طبیعی و سرطانی خونی: داروها و سمیّت
Stem cells occur in many somatic tissues of multicellular organism and are important participants in their physiology. Stem cells have three distinctive properties: 1- self-renewal, 2- the potential to proliferate extensively and 3- capability to develop into multiple lineages. Every time a stem cell divides, it makes one exact copy and one progenitor cell. Progenitor cells have finite division...
متن کاملA review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell
Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...
متن کاملThe INK4-ARF (CDKN2A/B) locus in hematopoiesis and BCR-ABL-induced leukemias.
Senescence and apoptosis programs governed by the Rb and p53 signaling networks can counter tissue stem cell self-renewal. A master regulator of Rb and p53 is the INK4-ARF (CDKN2A/B) locus that encodes two CDK inhibitors, p16(INK4A) and p15(INK4B), that maintain Rb in its active, hypophosphorylated form, and p14(ARF) (p19(Arf) in mice), that inhibits Mdm2 and activates p53. The INK4-ARF genes a...
متن کاملA Novel Assay to Trace Proliferation History In Vivo Reveals that Enhanced Divisional Kinetics Accompany Loss of Hematopoietic Stem Cell Self-Renewal
BACKGROUND The maintenance of lifelong blood cell production ultimately rests on rare hematopoietic stem cells (HSCs) that reside in the bone marrow microenvironment. HSCs are traditionally viewed as mitotically quiescent relative to their committed progeny. However, traditional techniques for assessing proliferation activity in vivo, such as measurement of BrdU uptake, are incompatible with pr...
متن کاملIncreased mir33 Expression in Expanded Hematopoietic Stem Cells Cultured on Adipose Stem Cells Feeder layer
Bachgroun: Hematopoietic stem cell derived from umbilical cord blood (UCB) has been used for regenerative medicine in hematological abnormalities. MicroRNAs are important regulators of gene expression that control both physiological and pathological processes such as development of tissue and cancer. Some studies have shown that miR-33, has a critical role in control of self-renewal cells. He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 97 9 شماره
صفحات -
تاریخ انتشار 2001