Regulation in vitro of an L-CAM enhancer by homeobox genes HoxD9 and HNF-1.
نویسندگان
چکیده
Previous studies have shown that in vitro expression of the neural cell adhesion molecule (N-CAM) can be regulated by the products of homeobox genes HoxB9, -B8, and -C6. N-CAM is a Ca(2+)-independent immunoglobulin-related CAM that plays an important role in neural development. In the present study, we investigated whether the liver cell adhesion molecule (L-CAM) a member of the Ca(2+)-dependent CAM family (cadherins) is also regulated by homeobox-containing genes. In transient cotransfection experiments of NIH 3T3 cells, we observed that both HoxD9 and liver-enriched POU-homeodomain transcription factor, HNF-1, activated chloramphenicol acetyltransferase gene reporter constructs containing the L-CAM promoter and an enhancer present in the second intron of the chicken L-CAM gene. Using electrophoretic mobility-shift assays, we found that components of cell extracts from NIH 3T3 cells transfected with HoxD9 bound to a small region of the L-CAM enhancer having a consensus sequence that is a putative binding site for HNF-1. Components of extracts from the chicken hepatoma cell line LMH that had been transfected with an HNF-1 expression vector also bound to this same site. In nuclear run-on experiments with nuclei from LMH cells that were transfected with expression vectors for HoxD9 or HNF-1, L-CAM RNA levels were increased 33-fold and 4-fold respectively. Using the same run-on procedure, it was confirmed that nuclei prepared from normal embryonic chicken liver cells expressed the RNAs for HoxD9, HNF-1, and L-CAM. Taken together with previous observations, these data raise the possibility that homeobox-containing genes will have a widespread role in the place-dependent expression of CAMs belonging both to immunoglobulin-related and to cadherin families.
منابع مشابه
Control of Hoxd gene transcription in the mammary bud by hijacking a preexisting regulatory landscape.
Vertebrate Hox genes encode transcription factors operating during the development of multiple organs and structures. However, the evolutionary mechanism underlying this remarkable pleiotropy remains to be fully understood. Here, we show that Hoxd8 and Hoxd9, two genes of the HoxD complex, are transcribed during mammary bud (MB) development. However, unlike in other developmental contexts, thei...
متن کاملHormonal regulation of an islet-specific enhancer in the pancreatic homeobox gene STF-1.
The homeobox protein STF-1 appears to function as a master control switch for expression of the pancreatic program during development. Here we characterize a composite enhancer which directs STF-1 expression to pancreatic islet cells via two functional elements that recognize the nuclear factors HNF-3beta and BETA-2. In keeping with their inhibitory effects on islet cell maturation, glucocortic...
متن کاملThe different tissue transcription patterns of genes for HNF-1, C/EBP, HNF-3, and HNF-4, protein factors that govern liver-specific transcription.
The transcription factors that act in hepatocyte-specific gene expression include proteins that are present mainly in liver cells (HNF-1/LFB1, C/EBP, HNF-3, HNF-4) (HNF, hepatocyte nuclear factor; C/EBP, rat enhancer binding protein) and proteins that are widely distributed (AP-1, NF-1, NF-Y/ACF). We show here that the genes encoding each of these liver-enriched factors exhibit different patter...
متن کاملInteraction of Vav with ENX-1, a putative transcriptional regulator of homeobox gene expression.
The proto-oncogene product Vav plays a critical role in hematopoietic signal transduction. By using the yeast two-hybrid system, we identified a novel human protein, ENX-1, which interacts specifically with Vav both in vitro and in vivo. ENX-1 represents the human homolog of the Drosophila Enhancer of zeste gene, a member of the Polycomb group of genes, which are transcriptional regulators of h...
متن کاملP-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction
Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 91 17 شماره
صفحات -
تاریخ انتشار 1994