Microbial Degradation of Sulfonamide Antibiotics

نویسندگان

  • Rachel Levine
  • Rachel E. Levine
  • Xu Li
چکیده

Certain microbes can transform antibiotics in the environment. However, little is known about the identity of these microbes and their antibiotic biotransformation processes. The objectives of this study were to (1) isolate bacterial strains capable of transforming antibiotics, (2) determine the biotransformation kinetics of antibiotics, (3) characterize the effects of background carbons on the biotransformation kinetics, and (4) identify biotransformation products under various environmental conditions. Sulfadiazine (SDZ) was used as the model antibiotic in this study due to its frequent occurrence in livestock wastes. Surface soil from a cattle feedlot was collected to enrich potential SDZ degrading bacteria. A mixed culture was obtained after several cycles of enrichment in a mineral solution containing 10 mg/L SDZ as the sole carbon and energy source. Despite repeated efforts, no single SDZ degrading strain could be isolated from the mixed culture. 16S rRNA gene sequence analysis showed that the culture consisted primarily of two major bacterial species, Brevibacterium epidermidis and Castellaniella denitrificans. The degradation kinetics of SDZ by the mixed culture could be described using a mirrored logistic function, with a biotransformation rate measured to be at 4.86 mg • L-1 • d-1. Three types of background carbons were tested: diluted R2A medium, glucose, and humic acid. The mixed culture had the fastest and slowest SDZ biotransformation rates when diluted R2A and humic aicd were used as the background carbon, respectively, at concentrations equivalent to SDZ on a carbon basis. The mixed culture could also degrade other sulfonamide compounds such as sulfamethazine and sulfamerazine, at transformation rates slower than that of SDZ, but could not degrade sulfathiazole. Using liquid chromatography tandem mass spectrometry, we identified 2-aminopyrimidine (2-AP) as a major biotransformation product of SDZ in the absence and presence of the background carbons tested. Another biotransformation product detected was confirmed to not be 4-aminobenzenesulfonate, the remaining structure after the cleavage of 2-AP from SDZ. This work presents a comprehensive study of microbial biotransformation of SDZ under various environmental conditions. throughout my graduate academic career. I am deeply indebted to Yuping Zhang, Brett Sallach, and countless other fellow graduate students for their advice and wisdom. Thank you to Lila Gillespie and Erika Bowman, two of the most hardworking and talented undergraduate researchers I have ever had the privilege of working with. Lastly, thank you to my family and friends for their support and love. Figure 2.5 COD vs. concentration relationships for R2A growth medium …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing the Efficiency of UV/TiO2 and UV/O3 Processes in Degradation of Sulfonamide Antibiotics in Aquatic Solution

Background and purpose: Emerging pollutants such as antibiotics are resistant to biodegradation. The aim of this study was to compare the effect of photocatalytic and Ozonation photolysis on decomposition of Sulfonamide antibiotics (Sulfacetamide, Sulfathiazole, Sulfamethoxazole, and Sulfadiazine) in aquatic environments. Materials and methods: In this study, experiments were conducted discont...

متن کامل

Bacterial communities associated with sulfonamide antibiotics degradation in sludge-amended soil.

This study investigated the degradation of sulfonamide antibiotics (SAs) and microbial community changes in sludge-amended soil. In batch experiments, SA degradation was enhanced by addition of spent mushroom compost (SMC), SMC extract, and extract-containing microcapsule, with SMC showing higher SA degradation rate than the other additives in soil-sludge mixtures. In bioreactor experiments, th...

متن کامل

Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf

Purpose Up to 90% of antibiotics that are fed to livestock are excreted unaltered or as metabolites and thus are present in manure. By application of manure as fertilizer, veterinary antibiotics can reach soil and groundwater. The aim of this study is to determine the effect of three commonly used (and simultaneously applied) sulfonamide antibiotics on both function and structural diversity of ...

متن کامل

Effects of thermophilic composting on oxytetracycline, sulfamethazine, and their corresponding resistance genes in swine manure.

Environmental contamination caused by residual antibiotics and antibiotic resistance genes (ARGs) in concentrated animal feeding operations has drawn increasing attention. This study investigated the removal of oxytetracycline (OTC) and sulfamethazine (SMN) as well as the behavior of their corresponding ARGs through a series of simulated composting tests with swine manure. The results indicate ...

متن کامل

Advantages for Radiation Treatment of Emerging Organic Pollutants: The treatment of Emerging Organic Pollutants using oxidative radicals

The hydroxyl radical induced decomposition of sulfonamide type antibiotics in dilute aqueous solutions was studied by a wide variety of analytical techniques. The degradation products were identified by LC/MS-MS, GC-MS, and ion chromatography. A new LC/MS-MS multiple reactions monitoring (MRM) database was set up for further identification purposes. ICP-MS, COD, BOD and TOC measurements were us...

متن کامل

Effects of pH and manure on transport of sulfonamide antibiotics in soil.

Sulfonamide antibiotics are a commonly used group of compounds in animal husbandry. They are excreted with manure, which is collected in a storage lagoon in certain types of confined animal feeding operations. Flood irrigation of forage fields with this liquid manure creates the potential risk of groundwater contamination in areas with shallow groundwater levels. We tested the hypothesis that-i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016