Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization
نویسندگان
چکیده
Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used to bind laccase via glutaraldehyde. The optimal pH for the activity of the immobilized laccases and free laccase were the same at pH 3.0 and the optimal temperature for laccase immobilization on ZnTAPc-Fe3O4 nanoparticle composite was 45 degrees. The immobilization yields and K(m) value of the laccase immobilized on ZnTAPc-Fe3O4 nanoparticle composite were 25% and 20.1 microM, respectively. This kind of immobilized laccase has good thermal, storage and operation stability, and could be used as the sensing biocomponent for the fiber optic biosensor based on enzyme catalysis.
منابع مشابه
The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme
The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...
متن کاملThe immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme
The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...
متن کاملImmobilization of Laccase from Trametes hirsuta onto CMC Coated Magnetic Nanoparticles
In this study, Fe3O4/CMC magnetic nanoparticles were synthesized through co-precipitation method. Afterward, laccase from Trametes hirsuta was immobilized onto Carboxymethyl cellulose (CMC)-coated magnetic Fe3O4 nanoparticles by covalent bonding between carboxyl groups of carboxymethyl cellulose and amine group of laccases. Also, the...
متن کاملEnhanced Performance of Magnetic Graphene Oxide-Immobilized Laccase and Its Application for the Decolorization of Dyes.
In this study, magnetic graphene oxide (MGO) nanomaterials were synthesized based on covalent binding of amino Fe3O4 nanoparticles onto the graphene oxide (GO), and the prepared MGO was successfully applied as support for the immobilization of laccase. The MGO-laccase was characterized by transmission electron microscopy (TEM) and a vibrating sample magnetometer (VSM). Compared with free laccas...
متن کاملحذف رنگ مستقیم سبز 6 با استفاده از نشانده شدن آنزیم لاکاس بر روی نانو ذرات فریت روی از محلول های آبی
Background and Objective: Manufactured wastewater management of industrial units containing toxic pollutants is essential for environmental protection. Considering the great applications and effects of using the nanomaterial and nanotechnology in the field of environmental protection, the nanoparticle of ZnFe2O4 has been used as a basic particle. On the other hand, enzyme processes, due to thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Nanomedicine
دوره 2 شماره
صفحات -
تاریخ انتشار 2007