Bio-inspired Robot Control for Human-robot Bi-manual Manipulation

نویسندگان

  • Stephen Warren
  • Panagiotis Artemiadis
چکیده

As robots are increasingly used in human-cluttered environments, the requirement of human-likeness in their movements becomes essential. Although robots perform a wide variety of demanding tasks around the world in factories, remote sites and dangerous environments, they are still lacking the ability to coordinate with humans in simple, every-day life bi-manual tasks, e.g. removing a jar lid. This paper focuses on the introduction of bio-inspired control schemes for robot arms that coordinate with human arms in bi-manual manipulation tasks. Using data captured from human subjects performing a variety of every-day bi-manual life tasks, we propose a bio-inspired controller for a robot arm, that is able to learn human interand intra-arm coordination during those tasks. We embed human arm coordination in low-dimension manifolds, and build potential fields that attract the robot to human-like configurations using the probability distributions of the recorded human data. The method is tested using a simulated robot arm that is identical in structure to the human arm. A preliminary evaluation of the approach is also carried out using an anthropomorphic robot arm in bi-manual manipulation task with a human subject.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Control of Human-Robot Bi-Manual Manipulation

As robots begin to permeate the everyday human workspace to collaborate in innumerable and varied tasks, the robotic structure must adhere and replicate human-like gestures for effective interaction. Whether rehabilitation or augmentation, upper arm human-robot interaction is some of the most prevalent and investigated forms of collaboration. However, currently robotic control schemes fail to c...

متن کامل

Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot

This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...

متن کامل

Bio-inspired Control of Dexterous Manipulation

Robots successfully manipulate objects in controlled environments. However, they fail in unknown environments. Few years old children lift and manipulate unfamiliar objects more dexterously than today’s robots. Therefore, roboticists are looking for inspiration on neurophysiological studies to improve their robotics control models. We present an artificial intelligence control model for dextero...

متن کامل

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

Dynamics, Stability Analysis and Control of a Mammal-Like Octopod Robot Driven by Different Central Pattern Generators

In this paper, we studied numerically both kinematic and dynamic models of a biologically inspired mammal-like octopod robot walking with a tetrapod gait. Three different nonlinear oscillators were used to drive the robot’s legs working as central pattern generators. In addition, also a new, relatively simple and efficient model was proposed and investigated. The introduced model of the gait ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013