Numerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices

نویسنده

  • Robert Orsi
چکیده

Presented are two related numerical methods, one for the inverse eigenvalue problem for nonnegative or stochastic matrices and another for the inverse eigenvalue problem for symmetric nonnegative matrices. The methods are iterative in nature and utilize alternating projection ideas. For the symmetric problem, the main computational component of each iteration is an eigenvalue-eigenvector decomposition, while for the other problem, it is a Schur matrix decomposition. Numerical results are presented demonstrating the effectiveness of the algorithms. Keywords— Inverse eigenvalue problem, nonnegative matrices, stochastic matrices, alternating projections, Schur’s decomposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Constructing Symmetric Nonnegative Matrices with Prescribed Eigenvalues by Di erential Equations

We propose solving the inverse eigenvalue problem for symmetric nonnegative matrices by means of a di erential equation. If the given spectrum is feasible, then a symmetric nonnegative matrix can be constructed simply by following the solution curve of the di erential system. The choice of the vector eld is based on the idea of minimizing the distance between the cone of symmetric nonnegative m...

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

On the alternating direction method of multipliers for nonnegative inverse eigenvalue problems with partial eigendata

We consider the nonnegative inverse eigenvalue problem with partial eigendata, which aims to find a nonnegative matrix such that it is nearest to a pre-estimated nonnegative matrix and satisfies the prescribed eigendata. In this paper, we propose several iterative schemes based on the alternating direction method of multipliers for solving the nonnegative inverse problem. We also extend our sch...

متن کامل

Nonnegative Inverse Eigenvalue Problem

Nonnegative matrices have long been a sorce of interesting and challenging mathematical problems. They are real matrices with all their entries being nonnegative and arise in a num‐ ber of important application areas: communications systems, biological systems, economics, ecology, computer sciences, machine learning, and many other engineering systems. Inverse eigenvalue problems constitute an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006