Separating Spike Count Correlation from Firing Rate Correlation

نویسندگان

  • Giuseppe Vinci
  • Valérie Ventura
  • Matthew A. Smith
  • Robert E. Kass
چکیده

Populations of cortical neurons exhibit shared fluctuations in spiking activity over time. When measured for a pair of neurons over multiple repetitions of an identical stimulus, this phenomenon emerges as correlated trial-to-trial response variability via spike count correlation (SCC). However, spike counts can be viewed as noisy versions of firing rates, which can vary from trial to trial. From this perspective, the SCC for a pair of neurons becomes a noisy version of the corresponding firing rate correlation (FRC). Furthermore, the magnitude of the SCC is generally smaller than that of the FRC and is likely to be less sensitive to experimental manipulation. We provide statistical methods for disambiguating time-averaged drive from within-trial noise, thereby separating FRC from SCC. We study these methods to document their reliability, and we apply them to neurons recorded in vivo from area V4 in an alert animal. We show how the various effects we describe are reflected in the data: within-trial effects are largely negligible, while attenuation due to trial-to-trial variation dominates and frequently produces comparisons in SCC that, because of noise, do not accurately reflect those based on the underlying FRC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance in population firing rate as a measure of slow time-scale correlation

Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but are rather modulated by perceptual and ...

متن کامل

Influence of temporal correlation of synaptic input on the rate and variability of firing in neurons.

The spike trains that transmit information between neurons are stochastic. We used the theory of random point processes and simulation methods to investigate the influence of temporal correlation of synaptic input current on firing statistics. The theory accounts for two sources for temporal correlation: synchrony between spikes in presynaptic input trains and the unitary synaptic current time ...

متن کامل

Electrophysiological and firing properties of neurons: Categorizing soloists and choristers in primary visual cortex.

Visual processing in the cortex involves various aspects of neuronal properties such as morphological, electrophysiological and molecular. In particular, the neural firing pattern is an important indicator of dynamic circuitry within a neuronal population. Indeed, in microcircuits, neurons act as soloists or choristers wherein the characteristical activity of a 'soloist' differs from the firing...

متن کامل

Single neuron firing properties impact correlation-based population coding.

Correlated spiking has been widely observed, but its impact on neural coding remains controversial. Correlation arising from comodulation of rates across neurons has been shown to vary with the firing rates of individual neurons. This translates into rate and correlation being equivalently tuned to the stimulus; under those conditions, correlated spiking does not provide information beyond that...

متن کامل

Diversity, heterogeneity and orientation-dependent variation of spike count correlation in the cat visual cortex.

Cortical neurons are known to be noisy encoders of information, showing large response variabilities with repeated presentations of identical stimuli. These spike count variabilities are correlated over the cell population and their neuronal mechanism and functional significance have not been well understood. Recently there has been much debate over the magnitude of the population mean of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2016