Grain-to-Grain Compositional Variations and Phase Segregation in Copper-Zinc-Tin-Sulfide Films.
نویسندگان
چکیده
We have performed a rigorous investigation of the structure and composition of individual grains in copper-zinc-tin-sulfide (CZTS) films realized by sulfurization of a sputtered metal stack. Although on average close to the ideal CZTS stoichiometry, elemental analysis shows significant grain-to-grain variations in composition. High-resolution Raman spectroscopy indicates that this is accompanied by grain-to-grain structural variations as well. The intensity from the 337 cm(-1) Raman peak, generally assigned to the kesterite phase of CZTS, remains constant over a large area of the sample. On the other hand, signals from secondary phases at 376 cm(-1) (copper-tin-sulfide) and 351 cm(-1) (zinc-sulfide) show significant variation over the same area. These results confirm the great complexity inherent to this material system. Moreover, structural and compositional variations are recognized in the literature as a factor limiting the efficiency of CZTS photovoltaic devices. This study demonstrates how a seemingly homogeneous CZTS thin film can actually have considerable structural and compositional variations at the microscale, and highlights the need for routine microscale characterization in this material system.
منابع مشابه
Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells
To obtain high photovoltaic performances for the emerging copper zinc tin sulfide/selenide (CZTSSe) thin film solar cells, much effort has deservedly been placed on CZTSSe phase purification and CZTSSe grain size enhancement. Another highly crucial but less explored factor for device performance is the elemental constitution of CZTSSe surface, which is at the heart of p-n junction where major p...
متن کاملModeling Tin Sulfide Grain Growth during Post-Processing
Tin sulfide (SnS) is a semiconductor material with both an indirect and direct bandgap at 1.1 eV and 1.3 eV respectively. Due to the availability of tin and sulfur, SnS is seen as a feasible alternative to the thin film CIGS and CdTe solar cells. With a direct bandgap of 1.1 eV and the ability to be produced as a thin film, the SnS solar cell should achieve high levels of efficiency of approxim...
متن کاملCopper-Zinc-Tin-Sulfur Thin Film Using Spin-Coating Technology
Cu₂ZnSnS₄ (CZTS) thin films were deposited on glass substrates by using spin-coating and an annealing process, which can improve the crystallinity and morphology of the thin films. The grain size, optical gap, and atomic contents of copper (Cu), zinc (Zn), tin (Sn), and sulfur (S) in a CZTS thin film absorber relate to the concentrations of aqueous precursor solutions containing copper chloride...
متن کاملNontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting.
Improving energy/fuel efficiency by converting waste heat into electricity using thermoelectric materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials are composed of either toxic or scarce elements. Here, we report the experimental realization of using nontoxic and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoele...
متن کاملDeformation Mechanisms in Pure and Alloyed Copper Films
In this work, the evolution of microstructure and the thermo-mechanical behavior of co pper and dilute copper alloy thin films was investigated. 0.3 to 2.0 μm thick film s were deposited by magnetron sputtering under ultra high vacuum conditions onto diffusion-barrier coated silicon substrates and subjected to wafer curvature measurements. Pure copper films annealed in ultra high vacuum exhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 8 35 شماره
صفحات -
تاریخ انتشار 2016