Performance Monitoring of MPC Based on Dynamic Principal Component Analysis
نویسندگان
چکیده
A unified framework based on the dynamic principal component analysis (PCA) is proposed for performance monitoring of constrained multi-variable model predictive control (MPC) systems. In the proposed performance monitoring framework, the dynamic PCA based performance benchmark is adopted for performance assessment, while performance diagnosis is carried out using a unified weighted dynamic PCA similarity measure. Simulation results obtained from the case study of the Shell process demonstrate that the use of the dynamic PCA performance benchmark can detect the performance deterioration more quickly compared with the traditional PCA method, and the proposed unified weighted dynamic PCA similarity measure can correctly locate the root cause for poor performance of MPC controller.
منابع مشابه
Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملOpportunities and Challenges of Model Predictive Control in Food Technologies
Modern food industry has gone transformation from classical production concepts based on intensive manual work and off-line monitoring to a highly automated computer on-line controlled processes. The main focus in process automation is on application of modern process analytical technologies (PAT) and computer models for analysis and synthesis of information from on-line sensor signals with bas...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملDynamic latent variable modeling for statistical process monitoring
Dynamic principal component analysis (DPCA) has been widely used in the monitoring of dynamic multivariate processes. In traditional DPCA, the dynamic relationship between process variables are implicit and hard to interpret. To extract explicit latent factors that are dynamically correlated, a new dynamic latent variable model is proposed. The new structure can improve modeling of dynamic data...
متن کاملFeature reduction of hyperspectral images: Discriminant analysis and the first principal component
When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...
متن کامل