Motion Noise Changes Directional Interaction between Transparently Moving Stimuli from Repulsion to Attraction
نویسندگان
چکیده
To interpret visual scenes, visual systems need to segment or integrate multiple moving features into distinct objects or surfaces. Previous studies have found that the perceived direction separation between two transparently moving random-dot stimuli is wider than the actual direction separation. This perceptual "direction repulsion" is useful for segmenting overlapping motion vectors. Here we investigate the effects of motion noise on the directional interaction between overlapping moving stimuli. Human subjects viewed two overlapping random-dot patches moving in different directions and judged the direction separation between the two motion vectors. We found that the perceived direction separation progressively changed from wide to narrow as the level of motion noise in the stimuli was increased, showing a switch from direction repulsion to attraction (i.e. smaller than the veridical direction separation). We also found that direction attraction occurred at a wider range of direction separations than direction repulsion. The normalized effects of both direction repulsion and attraction were the strongest near the direction separation of ∼25° and declined as the direction separation further increased. These results support the idea that motion noise prompts motion integration to overcome stimulus ambiguity. Our findings provide new constraints on neural models of motion transparency and segmentation.
منابع مشابه
The dependence of motion repulsion and rivalry on the distance between moving elements
We investigated the extent to which motion repulsion and binocular motion rivalry depend on the distance between moving elements. The stimuli consisted of two sets of spatially intermingled, finite-life random dots that moved across each other. The distance between the dots moving in different directions was manipulated by spatially pairing the dot trajectories with various precisions. Data fro...
متن کاملRevisiting motion repulsion: evidence for a general phenomenon?
Previous studies have found large misperceptions when subjects are reporting the perceived angle between two directions of motion moving transparently at an acute angle, the so called motion repulsion. While these errors have been assumed to be caused by interactions between the two directions present, we reassessed these earlier measurements taking into account recent findings about directiona...
متن کاملSwarming and pattern formation due to selective attraction and repulsion.
We discuss the collective dynamics of self-propelled particles with selective attraction and repulsion interactions. Each particle, or individual, may respond differently to its neighbours depending on the sign of their relative velocity. Thus, it is able to distinguish approaching (coming closer) and retreating (moving away) individuals. This differentiation of the social response is motivated...
متن کاملOn the duality between interaction responses and mutual positions in flocking and schooling
Recent research in animal behaviour has contributed to determine how alignment, turning responses, and changes of speed mediate flocking and schooling interactions in different animal species. Here, we propose a complementary approach to the analysis of flocking phenomena, based on the idea that animals occupy preferential, anysotropic positions with respect to their neighbours, and devote a la...
متن کاملEffects of attention on motion repulsion
Motion repulsion involves interaction between two directions of motion. Since attention is known to bias interactions among different stimuli, we investigated the effect of attentional tasks on motion repulsion. We used two overlapping sets of random dots moving in different directions. When subjects had to detect a small speed-change or luminance change for dots along one direction, the repuls...
متن کامل