Developing Plasmonics Under the Infrared Microscope: From Ni Nanoparticle Arrays to Infrared Micromesh.
نویسندگان
چکیده
Microscopes typically collect light over large ranges of angles dispersing plasmonic resonances. While this is an advantage for recording spectra of microscopic particles, it is a disadvantage for sensing by resonance shifts. Adaptations are described herein which enable one to identify, manipulate, and examine narrow plasmonic resonances under a microscope. Noting more general familiarity with metal nanoparticle arrays, a useful perspective is offered by relating the optical transmission of small Ni nanoparticle arrays to that of Ni metal films with microhole arrays, i.e., infrared-active mesh. This perspective also includes the connection to traditional dispersion studies, a new microscope method to measure the propagation length of surface-plasmon-polariton-mediated resonances, and the shifting of resonance positions by latex microspheres in the holes of mesh. A useful perspective is offered by relating the optical transmission of small Ni nanoparticle arrays to that of Ni metal films with microhole arrays, i.e., infrared-active mesh.
منابع مشابه
Controlled Growth of Well-Aligned Carbon Nanotubes, Electrochemical Modification and Electrodeposition of Multiple Shapes of Gold Nanostructures
An efficient method has been developed to synthesize well-aligned multi-walled carbon nanotubes (MWCNTs) on a conductive Ta substrate by chemical vapour deposition (CVD). Free-standing MWCNTs arrays were functionalized through electrochemical oxidation with the formation of hydroxyl and carboxyl functional groups. Using a new oven drying technique, we demonstrate that the unidirectionally align...
متن کاملAntenna-coupled Bolometer Arrays for Astrophysics
We are developing arrays of feedhorn-coupled, silicon nitride micromesh (‘spider web’) bolometers for the ESA/NASA Planck Surveyor and Herschel Space Observatory for millimeter to far-infrared wavelengths. These detector systems realize high end-to-end optical efficiency, essentially fill the available focal surface, and achieve background-limited sensitivity. The Planck/HFI detectors in partic...
متن کاملPerformance of Scanning Near-Field Optical Microscope Probes with Single Groove and Various Metal Coatings
We investigate the performance of a simple corrugated aperture scanning near-field optical microscope (SNOM) probe with various cladding metals. The probes have only one corrugation, however, they offer increased transmission over both uncorrugated probes and those with many grooves. Enhancement of light throughput results from excitation of surface plasmons at the corrugation at the core-cladd...
متن کاملMulti-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
We propose and demonstrate a novel photonic-plasmonic antenna capable of confining electromagnetic radiation at several mid-infrared wavelengths to a single sub-wavelength spot. The structure relies on the coupling between the localized surface plasmon resonance of a bow-tie nanoantenna with the photonic modes of surrounding multi-periodic particle arrays. Far-field measurements of the transmis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 3 13 شماره
صفحات -
تاریخ انتشار 2012