Magnetic steering control of multi-cellular bio-hybrid microswimmers.
نویسندگان
چکیده
Bio-hybrid devices, which integrate biological cells with synthetic components, have opened a new path in miniaturized systems with the potential to provide actuation and control for systems down to a few microns in size. Here, we address the challenge of remotely controlling bio-hybrid microswimmers propelled by multiple bacterial cells. These devices have been proposed as a viable method for targeted drug delivery but have also been shown to exhibit stochastic motion. We demonstrate a method of remote magnetic control that significantly reduces the stochasticity of the motion, enabling steering control. The demonstrated microswimmers consist of multiple Serratia marcescens (S. marcescens) bacteria attached to a 6 μm-diameter superparamagnetic bead. We characterize their motion and define the parameters governing their controllability. We show that the microswimmers can be controlled along two-dimensional (2-D) trajectories using weak magnetic fields (≤10 mT) and can achieve 2-D swimming speeds up to 7.3 μm s(-1). This magnetic steering approach can be integrated with sensory-based steering in future work, enabling new control strategies for bio-hybrid microsystems.
منابع مشابه
Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers
In this study, in a bio-hybrid microswimmer system driven by multiple Serratia marcescens bacteria, we quantify the chemotactic drift of a large number of microswimmers towards L-serine and elucidate the associated collective chemotaxis behavior by statistical analysis of over a thousand swimming trajectories of the microswimmers. The results show that the microswimmers have a strong heading pr...
متن کاملComputational steering of multi-scale biochemical networks
Computational steering is an interactive remote control of a long running application. The user can adopt it to adjust the simulation parameters on the fly. Correspondingly, simulation of large scale biochemical networks is computationally expensive, particularly stochastic and hybrid simulation. Such extremely intensive computations necessitate an interactive mechanism to permit users to try d...
متن کاملVelocity Control with Gravity Compensation for Magnetic Helical Microswimmers
Magnetic helical microswimmers, which swim using a method inspired by the propulsion of bacterial flagella, are promising for use as untethered micromanipulators and as medical microrobots. Man-made devices are typically heavier than their fluid environment and consequently sink due to their own weight. To date, methods to compensate for gravitational effects have been ad hoc. In this paper, we...
متن کاملSilica -magnetic inorganic hybrid nanomaterials as versatile sensing platform
Several hybrid sensing materials, which are organized by interaction of organic molecules onto inorganic supports, have been developed as a novel and hopeful class of hybrid sensing probes. The hybrid silica-magnetic based sensors provide perfect properties for production of various devices in sensing technology. The hybridization of silica and magnetic NPs as biocompatible, biodegradable and s...
متن کاملMultifunctional biohybrid magnetite microrobots for imaging-guided therapy
Magnetic microrobots and nanorobots can be remotely controlled to propel in complex biological fluids with high precision by using magnetic fields. Their potential for controlled navigation in hard-to-reach cavities of the human body makes them promising miniaturized robotic tools to diagnose and treat diseases in a minimally invasive manner. However, critical issues, such as motion tracking, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 14 19 شماره
صفحات -
تاریخ انتشار 2014