G Protein Mono-ubiquitination by the Rsp5 Ubiquitin Ligase.

نویسندگان

  • Matthew P Torres
  • Michael J Lee
  • Feng Ding
  • Carrie Purbeck
  • Brian Kuhlman
  • Nikolay V Dokholyan
  • Henrik G Dohlman
چکیده

Emerging evidence suggests that ubiquitination serves as a protein trafficking signal in addition to its well characterized role in promoting protein degradation. The yeast G protein alpha subunit Gpa1 represents a rare example of a protein that undergoes both mono- and poly-ubiquitination. Whereas mono-ubiquitinated Gpa1 is targeted to the vacuole, poly-ubiquitinated Gpa1 is directed instead to the proteasome. Here we investigate the structural requirements for mono- and poly-ubiquitination of Gpa1. We find that variants of Gpa1 engineered to be unstable are more likely to be poly-ubiquitinated and less likely to be mono-ubiquitinated. In addition, mutants that cannot be myristoylated are no longer mono-ubiquitinated but are still polyubiquitinated. Finally, we show that the ubiquitin ligase Rsp5 is necessary for Gpa1 mono-ubiquitination in vivo and that the purified enzyme is sufficient to catalyze Gpa1 mono-ubiquitination in vitro. Taken together, these data indicate that mono- and poly-ubiquitination have distinct enzyme and substrate recognition requirements; whereas poly-ubiquitination targets misfolded protein for degradation, a distinct ubiquitination apparatus targets the fully mature, fully myristoylated G protein for mono-ubiquitination and delivery to the vacuole.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubp2 Regulates Rsp5 Ubiquitination Activity In Vivo and In Vitro

The yeast HECT-family E3 ubiquitin ligase Rsp5 has been implicated in diverse cell functions. Previously, we and others [1], [2] reported the physical and functional interaction of Rsp5 with the deubiquitinating enzyme Ubp2, and the ubiquitin associated (UBA) domain-containing cofactor Rup1. To investigate the mechanism and significance of the Rsp5-Rup1-Ubp2 complex, we examined Rsp5 ubiquitina...

متن کامل

Protein ubiquitination and formation of polyubiquitin chains without ATP, E1 and E2 enzymes.

Studying protein ubiquitination is difficult due to the complexity of the E1-E2-E3 ubiquitination cascade. Here we report the discovery that C-terminal ubiquitin thioesters can undergo direct transthiolation with the catalytic cysteine of the model HECT E3 ubiquitin ligase Rsp5 to form a catalytically active Rsp5∼ubiquitin thioester (Rsp5∼Ub). The resulting Rsp5∼Ub undergoes efficient autoubiqu...

متن کامل

Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in Saccharomyces cerevisiae.

Rsp5 is an E3 ubiquitin-protein ligase of Saccharomyces cerevisiae that belongs to the hect domain family of E3 proteins. We have previously shown that Rsp5 binds and ubiquitinates the largest subunit of RNA polymerase II, Rpb1, in vitro. We show here that Rpb1 ubiquitination and degradation are induced in vivo by UV irradiation and by the UV-mimetic compound 4-nitroquinoline-1-oxide (4-NQO) an...

متن کامل

The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo

Ubiquitin ligases of the Nedd4 family regulate membrane protein trafficking by modifying both cargo proteins and the transport machinery with ubiquitin. Here, we investigate the role of the yeast Nedd4 homologue, Rsp5, in protein sorting into vesicles that bud into the multivesicular endosome (MVE) en route to the vacuole. A mutant lacking the Rsp5 C2 domain is unable to ubiquitinate or sort bi...

متن کامل

A functional analysis of the yeast ubiquitin ligase Rsp5: the involvement of the ubiquitin-conjugating enzyme Ubc4 and poly-ubiquitination in ethanol-induced down-regulation of targeted proteins.

Rsp5 is an essential ubiquitin ligase in Saccharomyces cerevisiae. We have found that the Ala401Glu rsp5 mutant is hypersensitive to various stresses, suggesting that Rsp5 is a key enzyme for yeast cell growth under stress conditions. The ubiquitination and the subsequent degradation of stress-induced misfolded proteins are indispensable for cell survival under stress conditions. In this study,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 13  شماره 

صفحات  -

تاریخ انتشار 2009