In vivo evolution of butane oxidation by terminal alkane hydroxylases AlkB and CYP153A6.

نویسندگان

  • Daniel J Koch
  • Mike M Chen
  • Jan B van Beilen
  • Frances H Arnold
چکیده

Enzymes of the AlkB and CYP153 families catalyze the first step in the catabolism of medium-chain-length alkanes, selective oxidation of the alkane to the 1-alkanol, and enable their host organisms to utilize alkanes as carbon sources. Small, gaseous alkanes, however, are converted to alkanols by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered in the laboratory, but these produce predominantly the 2-alkanols. Here we report the in vivo-directed evolution of two medium-chain-length terminal alkane hydroxylases, the integral membrane di-iron enzyme AlkB from Pseudomonas putida GPo1 and the class II-type soluble CYP153A6 from Mycobacterium sp. strain HXN-1500, to enhance their activity on small alkanes. We established a P. putida evolution system that enables selection for terminal alkane hydroxylase activity and used it to select propane- and butane-oxidizing enzymes based on enhanced growth complementation of an adapted P. putida GPo12(pGEc47 Delta B) strain. The resulting enzymes exhibited higher rates of 1-butanol production from butane and maintained their preference for terminal hydroxylation. This in vivo evolution system could be useful for directed evolution of enzymes that function efficiently to hydroxylate small alkanes in engineered hosts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control.

In many microorganisms the first step for alkane degradation is the terminal oxidation of the molecule by an alkane hydroxylase. We report the characterization of a gene coding for an alkane hydroxylase in a Burkholderia cepacia strain isolated from an oil-contaminated site. The protein encoded showed similarity to other known or predicted bacterial alkane hydroxylases, although it clustered on...

متن کامل

Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.

The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimens...

متن کامل

Utilizing Terminal Oxidants to Achieve P450-Catalyzed Oxidation of Methane

Terminal oxidant-supported P450 reactions alleviate the need for substrate binding to initiate catalysis by chemically generating “compound I.” This allows investigation of the innate substrate range of the enzyme active site. Using iodosylbenzene as the oxidant, CYP153A6, a medium-chain terminal alkane hydroxylase, exhibits methanol formation in the presence of methane demonstrating that P450-...

متن کامل

Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases.

Several strains that grow on medium-chain-length alkanes and catalyze interesting hydroxylation and epoxidation reactions do not possess integral membrane nonheme iron alkane hydroxylases. Using PCR, we show that most of these strains possess enzymes related to CYP153A1 and CYP153A6, cytochrome P450 enzymes that were characterized as alkane hydroxylases. A vector for the polycistronic coexpress...

متن کامل

Characterization of a novel long-chain n-alkane-degrading strain, Dietzia sp. E1.

The newly isolated strain E1, identified as a Dietzia sp., proved to have an excellent ability to degrade n-C12 to n-C38 alkane components of crude oil. The preferred substrate was the very long-chain alkane n-eicosane at an optimal temperature of 37 degrees C and an optimal pH of 8 under aerobic conditions. The growth and substrate uptake kinetics were monitored during the n-alkane fermentatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 2  شماره 

صفحات  -

تاریخ انتشار 2009