Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG.
نویسندگان
چکیده
PURPOSE The norepinephrine transporter (NET) is a critical regulator of catecholamine uptake in normal physiology and is expressed in neuroendocrine tumors like neuroblastoma. Although the norepinephrine analog, meta-iodobenzylguanidine (MIBG), is an established substrate for NET, (123)I/(131)I-MIBG has several clinical limitations for diagnostic imaging. In the current studies, we evaluated meta-[(18)F]-fluorobenzylguanidine ([(18)F]-MFBG) and compared it with (123)I-MIBG for imaging NET-expressing neuroblastomas. EXPERIMENTAL DESIGN NET expression levels in neuroblastoma cell lines were determined by Western blot and (123)I-MIBG uptake assays. Five neuroblastoma cell lines and two xenografts (SK-N-BE(2)C and LAN1) expressing different levels of NET were used for comparative in vitro and in vivo uptake studies. RESULTS The uptake of [(18)F]-MFBG in cells was specific and proportional to the expression level of NET. Although [(18)F]-MFBG had a 3-fold lower affinity for NET and an approximately 2-fold lower cell uptake in vitro compared with that of (123)I-MIBG, the in vivo imaging and tissue radioactivity concentration measurements demonstrated higher [(18)F]-MFBG xenograft uptake and tumor-to-normal organ ratios at 1 and 4 hours after injection. A comparison of 4 hours [(18)F]-MFBG PET (positron emission tomography) imaging with 24 hours (123)I-MIBG SPECT (single-photon emission computed tomography) imaging showed an approximately 3-fold higher tumor uptake of [(18)F]-MFBG, but slightly lower tumor-to-background ratios in mice. CONCLUSIONS [(18)F]-MFBG is a promising radiopharmaceutical for specifically imaging NET-expressing neuroblastomas, with fast pharmacokinetics and whole-body clearance. [(18)F]-MFBG PET imaging shows higher sensitivity, better detection of small lesions with low NET expression, allows same day scintigraphy with a shorter image acquisition time, and has the potential for lower patient radiation exposure compared with (131)I/(123)I-MIBG.
منابع مشابه
Imaging the Norepinephrine Transporter in Neuroblastoma: A Comparison of [F]-MFBG and I-MIBG
Purpose: The norepinephrine transporter (NET) is a critical regulator of catecholamine uptake in normal physiology and is expressed in neuroendocrine tumors like neuroblastoma. Although the norepinephrine analog, meta-iodobenzylguanidine (MIBG), is an established substrate for NET, I/I-MIBG has several clinical limitations for diagnostic imaging. In the current studies, we evaluated meta-[F]-fl...
متن کاملImaging, Diagnosis, Prognosis Imaging the Norepinephrine Transporter in Neuroblastoma: A Comparison of [F]-MFBG and I-MIBG
Purpose: The norepinephrine transporter (NET) is a critical regulator of catecholamine uptake in normal physiology and is expressed in neuroendocrine tumors like neuroblastoma. Although the norepinephrine analog, meta-iodobenzylguanidine (MIBG), is an established substrate for NET, I/I-MIBG has several clinical limitations for diagnostic imaging. In the current studies, we evaluated meta-[F]-fl...
متن کاملDiagnosis of pheochromocytoma with special emphasis on MEN2 syndrome.
Pheochromocytomas/paragangliomas(PHEOs/PGLs) are rare but treacherous catecholamine-producing tumors which, if overlooked or improperly treated, will almost invariably prove fatal. Patients with MEN2 PHEOs have a high incidence of paroxysmal attacks and a higher prevalence of hypertension and other cardiovascular problems than do patients with Von-Hippel-Lindau (VHL) PHEOs. Compared to measurem...
متن کاملEvaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models.
BACKGROUND Heart failure has been associated with impaired cardiac sympathetic neuronal function. Cardiac imaging with radiolabeled agents that are substrates for the neuronal norepinephrine transporter (NET) has demonstrated the potential to identify individuals at risk of cardiac events. N-[3-Bromo-4-(3-[18F]fluoro-propoxy)-benzyl]-guanidine (LMI1195) is a newly developed 18F-labeled NET subs...
متن کاملFunctional Imaging of Neuroendocrine Tumors: A Head-to-Head Comparison of Somatostatin Receptor Scintigraphy,
Functional techniques are playing a pivotal role in the imaging of cancer today. Our aim was to compare, on a head-to-head basis, 3 functional imaging techniques in patients with histologically verified neuroendocrine tumors: somatostatin receptor scintigraphy (SRS) with 111In-diethylenetriaminepentaacetic acidoctreotide, scintigraphy with 123I-metaiodobenzylguanidine (MIBG), and 18F-FDG PET. M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2014