A Feasible Direction Algorithm for Nonlinear Second-Order Cone Optimization Problems

نویسندگان

  • Alfredo Canelas
  • Miguel Carrasco
  • Julio López
چکیده

In this work we present a new feasible direction algorithm for solving smooth nonlinear second-order cone programs. These problems consist of minimizing a nonlinear differentiable objective function subject to some nonlinear second-order cone constraints. Given a point interior to the feasible set defined by the nonlinear constraints, the proposed approach computes a feasible and descent direction for the objective function. The search direction is computed by using a formulation that is similar to the algorithm FDIPA for nonlinear programming. A line search along the search direction finds a new feasible point that has a lower value of the objective function. Repeating this process, the algorithm generates a feasible sequence with a monotone decrease of the objective function. Under mild assumptions we prove that the present algorithm converge globally to stationary points of the nonlinear second-order cone program. We test our algorithm with several instances of robust classification of support vector machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quasi-Normal Direction (QND) Method: An Efficient Method for Finding the Pareto Frontier in Multi-Objective Optimization Problems

In managerial and economic applications, there appear problems in which the goal is to simultaneously optimize several criteria functions (CFs). However, since the CFs are in conflict with each other in such cases, there is not a feasible point available at which all CFs could be optimized simultaneously. Thus, in such cases, a set of points, referred to as 'non-dominate' points (NDPs), will be...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

RESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM

This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...

متن کامل

Waveform Design using Second Order Cone Programming in Radar Systems

Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...

متن کامل

Sl1QP Based Algorithm with Trust Region Technique for Solving Nonlinear Second-Order Cone Programming Problems

In this paper, we propose an algorithm based on Fletcher’s Sl1QP method and the trust region technique for solving Nonlinear Second-Order Cone Programming (NSOCP) problems. The Sl1QP method was originally developed for nonlinear optimization problems with inequality constraints. It converts a constrained optimization problem into an unconstrained problem by using the l1 exact penalty function, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014