Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs
نویسندگان
چکیده
Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G 0 = 4e (2)/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G 0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm(-1), fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G 0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm(-1), which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm(-1) and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies.
منابع مشابه
Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2
Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...
متن کاملApplication of Neural Space Mapping for Modeling Ballistic Carbon Nanotube Transistors
In this paper, using the neural space mapping (NSM) concept, we present a SPICE-compatible modeling technique to modify the conventional MOSFET equations, to be suitable for ballistic carbon nanotube transistors (CNTTs). We used the NSM concept in order to correct conventional MOSFET equations so that they could be used for carbon nanotube transistors. To demonstrate the accuracy of our mod...
متن کاملThe Effect of Optical Phonon Scattering on the On-Current and Gate Delay Time of CNT-FETs
The performance of carbon nanotube field-effect transistors is analyzed, using the nonequilibrium Green’s function formalism. The role of the inelastic electron-phonon interaction on the both on-current and gate delay time of these devices is studied. For the calculation of the gate delay time the quasi-static approximation is assumed. The results confirm experimental data of carbon nanotube tr...
متن کاملPerformance Projections for Ballistic Carbon Nanotube Field-Effect Transistors
The performance limits of carbon nanotube field-effect transistors ~CNTFETs! are examined theoretically by extending a one-dimensional treatment used for silicon metal–oxide– semiconductor field-effect transistors ~MOSFETs!. Compared to ballistic MOSFETs, ballistic CNTFETs show similar I – V characteristics but the channel conductance is quantized. For low-voltage, digital applications, the CNT...
متن کاملTen- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography.
A simple method combining photolithography and shadow (or angle) evaporation is developed to fabricate single-walled carbon nanotube (SWCNT) devices with tube lengths of approximately 10-50 nm between metal contacts. Large numbers of such short devices are obtained without the need of complex tools such as electron beam lithography. Metallic SWCNTs with lengths of approximately 10 nm, near the ...
متن کامل