Perturbed Spectra of Defective Matrices
نویسندگان
چکیده
This paper is devoted to the perturbation theory for defective matrices. We consider the asymptotic expansions of the perturbed spectrum when a matrix A is changed to A+ tE, where E = 0 and t > 0 is a small parameter. In particular, we analyse the rational exponents that may occur when the matrix E varies over the sphere ‖E‖ = ρ > 0. We partially characterize the leading exponents noting that the description of the set of all leading exponents remains an open problem.
منابع مشابه
Some Results on Polynomial Numerical Hulls of Perturbed Matrices
In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.
متن کاملDetection of perturbed quantization (PQ) steganography based on empirical matrix
Perturbed Quantization (PQ) steganography scheme is almost undetectable with the current steganalysis methods. We present a new steganalysis method for detection of this data hiding algorithm. We show that the PQ method distorts the dependencies of DCT coefficient values; especially changes much lower than significant bit planes. For steganalysis of PQ, we propose features extraction from the e...
متن کاملDeparture from Normality and Eigenvalue Perturbation Bounds
Perturbation bounds for eigenvalues of diagonalizable matrices are derived that do not depend on any quantities associated with the perturbed matrix; in particular the perturbed matrix can be defective. Furthermore, Gerschgorin-like inclusion regions in the Frobenius are derived, as well as bounds on the departure from normality. 1. Introduction. The results in this paper are based on two eigen...
متن کاملThe Characteristic Polynomial of Some Perturbed Tridiagonal k-Toeplitz Matrices
We generalize some recent results on the spectra of tridiagonal matrices, providing explicit expressions for the characteristic polynomial of some perturbed tridiagonal k-Toeplitz matrices. The calculation of the eigenvalues (and associated eigenvectors) follows straightforward. Mathematics Subject Classification: 15A18, 42C05, 33C45
متن کامل