L-serine catabolism via an oxygen-labile L-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni.

نویسندگان

  • Jyoti Velayudhan
  • Michael A Jones
  • Paul A Barrow
  • David J Kelly
چکیده

Campylobacter jejuni is a microaerophilic, asaccharolytic bacterium. The identity of the carbon and energy sources used by C. jejuni in vivo is unknown, but the genome sequence of strain NCTC11168 indicates the presence of genes for catabolism of a limited range of amino acids, including serine. Specific omission of L-serine from a defined medium containing a mixture of amino acids led to a dramatic decrease in cell yields. As C. jejuni does not have a biosynthetic serine requirement, this supports earlier suggestions that L-serine is a preferentially catabolized amino acid. Serine transport was found to be mediated by at least two systems in strain 11168; a high-capacity, low-affinity L-serine-specific system encoded by Cj1625c (sdaC) and a higher-affinity L-serine/L-threonine system responsible for residual L-serine transport in an sdaC mutant. Catabolism of L-serine to pyruvate and ammonia is carried out by SdaA (encoded by Cj1624c), which was overexpressed, purified, and shown to be an oxygen-labile iron-sulfur enzyme. L-Serine dehydratase activity in an sdaA mutant was reduced 10-fold compared to that in the wild type, but the residual activity (due to the anabolic L-threonine dehydratase) could not support either growth on or utilization of L-serine in defined media. However, although sdaA mutants showed no obvious growth defect in complex media, they completely failed to colonize 3-week-old chickens as assayed both by cloacal swabs taken over a 6-week period and by cecal colony counts postmortem. In contrast, the isogenic parent strain colonized chickens to high levels within 1 week of inoculation. The results show that an active SdaA is essential for colonization of the avian gut by C. jejuni and imply that catabolism of L-serine is crucially important for the growth of this bacterium in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Amino Acid Catabolism to the Tissue Specific Persistence of Campylobacter jejuni in a Murine Colonization Model

Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and prolin...

متن کامل

N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness.

Campylobacter jejuni is the etiologic agent of human bacterial gastroenteritis worldwide. In contrast, despite heavy colonization, C. jejuni maintains a commensal mode of existence in chickens. The consumption of contaminated chicken products is thought to be the principal mode of C. jejuni transmission to the human population. C. jejuni harbors a system for N-linked protein glycosylation that ...

متن کامل

Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract.

The genome sequence of the human pathogen Campylobacter jejuni NCTC11168 has been determined recently, but studies on colonization and persistence in chickens have been limited due to reports that this strain is a poor colonizer. Experimental colonization and persistence studies were carried out with C. jejuni NCTC11168 by using 2-week-old Light Sussex chickens possessing an acquired natural gu...

متن کامل

Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni.

Campylobacter spp. are a significant contributor to the bacterial etiology of acute gastroenteritis in humans. Epidemiological evidence implicates poultry as a major source of the organism for human illness. However, the factors involved in colonization of poultry with Campylobacter spp. remain unclear. Determining colonization-associated factors at the proteome level should facilitate our unde...

متن کامل

Gamma-glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni.

The contribution of gamma-glutamyl transpeptidase (GGT) to Campylobacter jejuni virulence and colonization of the avian gut has been investigated. The presence of the ggt gene in C. jejuni strains directly correlated with the expression of GGT activity as measured by cleavage and transfer of the gamma-glutamyl moiety. Inactivation of the monocistronic ggt gene in C. jejuni strain 81116 resulted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 72 1  شماره 

صفحات  -

تاریخ انتشار 2004