Optimization of Hydrolysis Conditions for the Production of Angiotensin-I Converting Enzyme-Inhibitory Peptides and Isolation of a Novel Peptide from Lizard Fish (Saurida elongata) Muscle Protein Hydrolysate

نویسندگان

  • Shanguang Wu
  • Jianhua Sun
  • Zhangfa Tong
  • Xiongdiao Lan
  • Zhongxing Zhao
  • Dankui Liao
چکیده

Lizard fish (Saurida elongata) muscle protein was hydrolyzed using neutral protease to produce protein hydrolysate (LFPH), and the hydrolysis conditions were investigated using response-surface methodology. The optimum conditions for producing peptides with the highest angiotensin-I converting enzyme (ACE)-inhibitory activity were the following: enzyme-to-substrate ratio of 10,000 U/g, temperature of 48 °C, pH 7.0, and hydrolysis time of 2 h. Under these conditions, the ACE-inhibitory activity of LFPH and the degree of hydrolysis were 84% and 24%, respectively. A novel ACE-inhibitory peptide was isolated from LFPH using ultrafiltration, Sephadex G-15, and high-performance liquid chromatography. The amino acid sequence of the ACE-inhibitory peptide was identified as Ser-Pro-Arg-Cys-Arg (SPRCR), and its IC₅₀ was 41 ± 1 µM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Saurida elongata Proteins Hydrolysate by IMAC-Ni2+

Lizard fish protein hydrolysates (LFPH) were prepared from Lizard fish (Saurida elongata) proteins possessing powerful angiotensin I converting enzyme (ACE) inhibitory activity and the fraction (LFPH-I) with high ACE inhibitory activity was obtained through ultrafiltration. The active Fraction (F2) was isolated from LFPH-I using immobilized metal affinity chromatography (IMAC-Ni2+). Analysis of...

متن کامل

Determination of Optimum Conditions for the Production of Peptides with Antioxidant and Nitric-Oxide Inhibition Properties from Protein Hydrolysis of Pumpkin Seed Meals Using Pepsin Enzyme

Background and Objectives: In this study, hydrolysis condition optimization of the pumpkin (Cucurbita pepo) seed proteins was carried out achieve maximum DPPH radical scavenging and nitric-oxide inhibition properties using Design Expert Software and response surface methodology.  Materials & Methods: In general, 1–3% concentrations of pepsin enzyme, 30–40 °C temperature and 120–100 min time we...

متن کامل

The Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Rainbow Trout Muscle Hydrolysate

The purpose of this study was the purification and characterization of an angiotensin I converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of rainbow trout Oncorhynchus mykiss muscle. After removal of lipid, the approximate composition analysis of the rainbow trout revealed 24.4%, 1.7%, and 68.3% for protein, lipid, and moisture, respectively. Among six hydrolysates...

متن کامل

A HPLC-UV method for the determination of angiotensin I-converting enzyme (ACE) inhibitory activity

To determine the angiotensin-converting enzyme (ACE) inhibitory activity of a fish hydrolysate, different methods were tested. Finally, a sensitive, extraction-free HPLC method using N-(3-[2-furylacryloyl)-PheGly-Gly (FAPGG) as substrate was preferred. This method relies on the UV-titration of the peptide 2-furylacryloyl-L-Phe (FAP) resulting from the hydrolysis of the FAPGG after a chromatogra...

متن کامل

Optimization of Factors Affecting the Antioxidant Activity of Fenugreek Seed’s Protein Hydrolysate by Response Surface Methodology

Background and Objectives: Bioactive peptides have different health benefits and functional characteristics and are produced by enzymatic hydrolysis, microbial fermentation and chemical synthesis methods. The purpose of this study was to optimize the enzymatic hydrolysis conditions of fenugreek seed protein with alcalase and to evaluate the antioxidant properties of the resulting peptides. Mate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2012