Convexity Shape Prior for Segmentation
نویسندگان
چکیده
Convexity is known as an important cue in human vision. We propose shape convexity as a new high-order regularization constraint for binary image segmentation. In the context of discrete optimization, object convexity is represented as a sum of 3-clique potentials penalizing any 1-0-1 configuration on all straight lines. We show that these non-submodular interactions can be efficiently optimized using a trust region approach. While the cubic number of all 3-cliques is prohibitively high, we designed a dynamic programming technique for evaluating and approximating these cliques in linear time. Our experiments demonstrate general usefulness of the proposed convexity constraint on synthetic and real image segmentation examples. Unlike standard secondorder length regularization, our convexity prior is scale invariant, does not have shrinking bias, and is virtually parameter-free.
منابع مشابه
A-expansion for multiple "hedgehog" shapes
Overlapping colors and cluttered or weak edges are common segmentation problems requiring additional regularization. For example, star-convexity is popular for interactive single object segmentation due to simplicity and amenability to exact graph cut optimization. This paper proposes an approach to multiobject segmentation where objects could be restricted to separate “hedgehog” shapes. We sho...
متن کاملInteractive Brain Tumor Segmentation with Inclusion Constraints
This thesis proposes an improved interactive brain tumor segmentation method based on graph cuts, which is an efficient global optimization framework for image segmentation, and star shape, which is a general segmentation shape prior with minimal user assistance. Our improvements lie in volume ballooning, compactness measure and inclusion constraints. Volume ballooning is incorporated to help t...
متن کاملShape complexes: the intersection of label orderings and star convexity constraints in continuous max-flow medical image segmentation.
Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of "shape complexes," which...
متن کاملShape Complexes in Continuous Max-Flow Hierarchical Multi-Labeling Problems
Although topological considerations amongst multiple labels have been previously investigated in the context of continuous max-flow image segmentation, similar investigations have yet to be made about shape considerations in a general and extendable manner. This paper presents shape complexes for segmentation, which capture more complex shapes by combining multiple labels and super-labels const...
متن کاملWeakly Convex Coupling Continuous Cuts and Shape Priors
We introduce a novel approach to variational image segmentation with shape priors. Key properties are convexity of the joint energy functional and weak coupling of convex models from different domains by mapping corresponding solutions to a common space. Specifically, we combine total variation based continuous cuts for image segmentation and convex relaxations of Markov Random Field based shap...
متن کامل