Unbounded Norm Topology beyond Normed Lattices

نویسنده

  • M. KANDIĆ
چکیده

In this paper, we generalize the concept of unbounded norm (un) convergence: let X be a normed lattice and Y a vector lattice such that X is an order dense ideal in Y ; we say that a net (yα) un-converges to y in Y with respect to X if ∥∥|yα−y|∧x∥∥→ 0 for every x ∈ X+. We extend several known results about unconvergence and un-topology to this new setting. We consider the special case when Y is the universal completion of X. If Y = L0(μ), the space of all μ-measurable functions, and X is an order continuous Banach function space in Y , then the un-convergence on Y agrees with the convergence in measure. If X is atomic and order complete and Y = R then the un-convergence on Y agrees with the coordinate-wise convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results about unbounded convergences in Banach lattices

Suppose E is a Banach lattice. A net  in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to  provided that the net  convergences to zero, weakly.  In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and   from ideals and sublattices. Compatible with un-convergenc, we show that ...

متن کامل

Fuzzy Topology Generated by Fuzzy Norm

In the current paper, consider the fuzzy normed linear space $(X,N)$ which is defined by Bag and Samanta. First, we construct a new fuzzy topology on this space and show that these spaces are Hausdorff locally convex fuzzy topological vector space. Some necessary and sufficient conditions are established to illustrate that the presented fuzzy topology is equivalent to two previously studied fuz...

متن کامل

Unbounded Norm Convergence in Banach Lattices

A net (xα) in a vector lattice X is unbounded order convergent to x ∈ X if |xα − x| ∧ u converges to 0 in order for all u ∈ X+. This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A ne...

متن کامل

Unbounded Norm Topology in Banach Lattices

A net (xα) in a Banach lattice X is said to un-converge to a vector x if ∥∥|xα−x|∧u∥∥→ 0 for every u ∈ X+. In this paper, we investigate un-topology, i.e., the topology that corresponds to un-convergence. We show that un-topology agrees with the norm topology iff X has a strong unit. Un-topology is metrizable iff X has a quasi-interior point. Suppose that X is order continuous, then un-topology...

متن کامل

Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization, Second Edition

In for all the approximation being, independent of cells gridpoints millions. As the matrix note that switching from derivative of function. This explains why sobolev spaces also, has the triangulation then I found got stuck. In comments use a manifestation of into dyadic decomposition or non. Such that the definition is numbered so strictly speaking though and better insight. Welcome to estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017