Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function.
نویسندگان
چکیده
Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks.
منابع مشابه
Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape an...
متن کاملAndrogens play a pivotal role in maintaining penile tissue architecture and erection: a review.
Androgens are essential for development, growth, and maintenance of penile structure, and regulate erectile physiology by multiple mechanisms. Here we provide a concise overview of the basic research findings pertaining to androgen modulation of erectile tissue architecture and physiology. A significant body of evidence exists pointing to a critical role of androgens in erectile physiology. Stu...
متن کاملBiomechanical properties of intermediate filaments: from tissues to single filaments and back.
The animal cell cytoskeleton consists of three interconnected filament systems: actin-containing microfilaments (MFs), microtubules (MTs), and the lesser known intermediate filaments (IFs). All IF proteins share a common tripartite domain structure and the ability to assemble into 8-12 nm wide filaments. Electron microscopy data suggest that IFs are built according to a completely different pla...
متن کاملCytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus.
The localization of the nucleus is precisely regulated, and defects in nuclear positioning are observed in diseases such as lissencephaly, cerebellar ataxia and dysplasia. We show here that cytoplasmic intermediate filaments are essential players in actin-dependent positioning of the nucleus. The actin retrograde flow is relayed by a flow of intermediate filaments that accumulate asymmetrically...
متن کاملKeratin 20 Expressed in the Endocrine and Exocrine Cells of the Rabbit Duodenum
The expression of intermediate filaments is sensitively reflected in cell function. To examine the involvement of keratin in a secretory function, 15 kinds of keratin (keratin-2, 3, 4, 5, 6, 7, 8, 10, 13, 14, 16, 17, 18, 19, 20) were detected immunohistochemically and immunoelectron microscopically in the rabbit duodenum. Four types of secretory cells existed in the rabbit duodenum: enteroendoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 290 28 شماره
صفحات -
تاریخ انتشار 2015