On QPCCs, QCQPs and Completely Positive Programs
نویسندگان
چکیده
This paper studies several classes of nonconvex optimization problems defined over convex cones, establishing connections between them and demonstrating that they can be equivalently formulated as convex completely positive programs. The problems being studied include: a quadratically constrained quadratic program (QCQP), a quadratic program with complementarity constraints (QPCC), and rank constrained semidefinite programs. Our results do not make any boundedness assumptions on the feasible regions of the various problems considered. The first stage in the reformulation is to cast the problem as a conic QCQP with just one nonconvex constraint q(x) ≤ 0, where q(x) is nonnegative over the (convex) conic and linear constraints, so the problem fails the Slater constraint qualification. A quadratic program with (linear) complementarity constraints (or QPCC) has such a structure; we prove the converse, namely that any conic QCQP satisfying a constraint qualification can be expressed as an equivalent conic QPCC. The second stage of the reformulation lifts the problem to a completely positive program, and exploits and generalizes a result of Burer. We also show that a Frank-Wolfe type result holds for a subclass of this class of QCQPs. Further, we derive necessary and The work of Bai and Mitchell was supported by the Air Force Office of Sponsored Research under grant FA9550-11-1-0260 and by the National Science Foundation under Grant Number CMMI-1334327. The work of Pang was supported by the National Science Foundation under Grant Number CMMI-1333902 and by the Air Force Office of Scientific Research under Grant Number FA9550-11-1-0151. Lijie Bai Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A. E-mail: [email protected] John E.Mitchell Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, U.S.A. E-mail: [email protected] Jong-Shi Pang Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA 90089, USA. E-mail: [email protected]
منابع مشابه
On conic QPCCs, conic QCQPs and completely positive programs
This paper studies several classes of nonconvex optimization problems defined over convex cones, establishing connections between them and demonstrating that they can be equivalently formulated as convex completely positive programs. The problems being studied include: a conic quadratically constrained quadratic program (QCQP), a conic quadratic program with complementarity constraints (QPCC), ...
متن کاملFaster, but weaker, relaxations for quadratically constrained quadratic programs
We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve more quickly than SDP. A downside is that the calculated bounds are weaker than those gotten by SD...
متن کاملUsing quadratic convex reformulation to tighten the convex relaxation of a quadratic program with complementarity constraints
Quadratic Convex Reformulation (QCR) is a technique that has been proposed for binary and mixed integer quadratic programs. In this paper, we extend the QCR method to convex quadratic programs with linear complementarity constraints (QPCCs). Due to the complementarity relationship between the nonnegative variables y and w, a term yDw can be added to the QPCC objective function, where D is a non...
متن کاملAFRL-OSR-VA-TR-2014-0126 Global Resolution of Convex Programs with Complementarity Constraints
Quadratic Convex Reformulation (QCR) is a technique that has been proposed for binary and mixed integer quadratic programs. In this paper, we extend the QCR method to convex quadratic programs with linear complementarity constraints (QPCCs). Due to the complementarity relationship between the nonnegative variables y and w, a term yDw can be added to the QPCC objective function, where D is a non...
متن کاملGENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS
A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...
متن کامل