Conserved RNA secondary structures in Picornaviridae genomes.
نویسندگان
چکیده
The family Picornaviridae contains important pathogens including, for example, hepatitis A virus and foot-and-mouth disease virus. The genome of these viruses is a single messenger-active (+)-RNA of 7200-8500 nt. Besides coding for the viral proteins, it also contains functionally important RNA secondary structures, among them an internal ribosomal entry site (IRES) region towards the 5'-end. This contribution provides a comprehensive computational survey of the complete genomic RNAs and a detailed comparative analysis of the conserved structural elements in seven of the currently nine genera in the family PICORNAVIRIDAE: Compared with previous studies we find: (i) that only smaller sections of the IRES region than previously reported are conserved at single base-pair resolution and (ii) that there is a number of significant structural elements in the coding region. Furthermore, we identify potential cis-acting replication elements in four genera where this feature has not been reported so far.
منابع مشابه
An RNA tertiary structure in the 3' untranslated region of enteroviruses is necessary for efficient replication.
RNA tertiary structures, such as pseudoknots, are known to be biologically significant in a number of virus systems. The 3' untranslated regions of the RNA genomes of all members of the Enterovirus genus of Picornaviridae exhibit a potential, pseudoknot-like, tertiary structure interaction of an unusual type. This is formed by base pairing between loop regions of two secondary structure domains...
متن کاملStatistical properties of thermodynamically predicted RNA secondary structures in viral genomes
By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four gr...
متن کاملDetecting Conserved RNA Secondary Structures in Viral Genomes: The RADAR Approach
Conserved regions, or motifs, present among RNA secondary structures serve as a useful indicator for predicting the functionality of the RNA molecules. Automated detection or discovery of these conserved regions is emerging as an important research topic in health and disease informatics. In this short paper we present a new approach for detecting conserved regions in RNA secondary structures b...
متن کاملConserved RNA secondary structures in viral genomes: A survey
SUMMARY The genomes of RNA viruses often carry conserved RNA structures that perform vital functions during the life cycle of the virus. Such structures can be detected using a combination of structure prediction and co-variation analysis. Here we present results from pilot studies on a variety of viral families performed during bioinformatics computer lab courses in past years.
متن کاملA comparative method for finding and folding RNA secondary structures within protein-coding regions.
Existing computational methods for RNA secondary-structure prediction tacitly assume RNA to only encode functional RNA structures. However, experimental studies have revealed that some RNA sequences, e.g. compact viral genomes, can simultaneously encode functional RNA structures as well as proteins, and evidence is accumulating that this phenomenon may also be found in Eukaryotes. We here prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 29 24 شماره
صفحات -
تاریخ انتشار 2001