Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach

نویسندگان

  • Panos Parpas
  • Berk Ustun
  • Mort Webster
  • Quang Kha Tran
چکیده

Stochastic programming models are large-scale optimization problems that are used to facilitate decisionmaking under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it requires the evaluation of a multidimensional integral whose integrand is an optimization problem. In turn, the recourse function has to be estimated using techniques such as scenario trees or Monte Carlo methods, both of which require numerous functional evaluations to produce accurate results for large-scale problems with multiple periods and high-dimensional uncertainty. In this work, we introduce an importance sampling framework for stochastic programming that can produce accurate estimates of the recourse function using a small number of samples. Previous approaches for importance sampling in stochastic programming were limited to problems where the uncertainty was modeled using discrete random variables, and the recourse function was additively separable in the uncertain dimensions. Our framework avoids these restrictions by pairing Markov Chain Monte Carlo methods with Kernel Density Estimation algorithms to build a non-parametric importance sampling distribution, which can then be used to produce a lower-variance estimate of the recourse function. We demonstrate the increased accuracy and efficiency of our approach using variants of well-known multistage stochastic programming problems. Our numerical results show that our framework produces more accurate estimates of the optimal value of stochastic programming models, especially for problems with moderate variance, multimodal or rare-event distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

The Markov Chain Monte Carlo Approach to Importance Sampling in Stochastic Programming

Stochastic programming models are large-scale optimization problems that are used to facilitate decision-making under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it involves the evaluation of a multidimensional inte...

متن کامل

B Lock Updating in Constrained M Arkov Chain

Markov chain Monte Carlo methods are widely used to study highly structured stochastic systems. However when the system is subject to constraints, it is difficult to find irreducible proposal distributions. We suggest a “block-wise” approach for constrained sampling and optimisation.

متن کامل

A Sequential Monte Carlo Approach to Computing Tail Probabilities in Stochastic Models

Sequential Monte Carlo methods which involve sequential importance sampling and resampling are shown to provide a versatile approach to computing probabilities of rare events. By making use of martingale representations of the sequential Monte Carlo estimators, we show how resampling weights can be chosen to yield logarithmically efficient Monte Carlo estimates of large deviation probabilities ...

متن کامل

Stochastic image denoising based on Markov-chain Monte Carlo sampling

A novel stochastic approach based on Markov-Chain Monte Carlo sampling is investigated for the purpose of image denoising. The additive image denoising problem is formulated as a Bayesian least squares problem, where the goal is to estimate the denoised image given the noisy image as the measurement and an estimated posterior. The posterior is estimated using a nonparametric importance-weighted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2015