Nondeterminism and Fully Abstract Models
نویسندگان
چکیده
— We study the semantics ofsome nondeterministic languages derivedfrom PCF [8]. In particular we discuss how Milner" s results in [5] can (or cannoi) be applied to obtain models,for our languages, which arefully abstract with respect to the (standard) operational semantics. Résumé. — Nous étudions ici la sémantique de quelques langages non déterministes, dérivés du PCF [8]. En particulier, nous discutons dans quelle mesure les résultats de Milner [5] peuvent être utilisés pour obtenir des modèles, pour nos langages, qui soient « pleinement abstraits » par rapport à la sémantique opérationnelle usuelle.
منابع مشابه
Intensional and Extensional Semantics of Bounded and Unbounded Nondeterminism
We give extensional and intensional characterizations of nondeterministic functional programs: as structure preserving functions between biorders, and as nondeterministic sequential algorithms on ordered concrete data structures which compute them. A fundamental result establishes that the extensional and intensional representations of non-deterministic programs are equivalent, by showing how t...
متن کاملA Fully Abstract Game Semantics for Finite Nondeterminism
A game semantics of finite nondeterminism is proposed. In this model, a strategy may make a choice between different moves in a given situation; moreover, strategies carry extra information about their possible divergent behaviour. A Cartesian closed category is built and a model of a simple, higher-order nondeterministic imperative language is given. This model is shown to be fully abstract, w...
متن کاملUsing SMT for dealing with nondeterminism in ASM-based runtime verification
In runtime verification, operational models describing the expected system behavior offer some advantages with respect to declarative specifications of properties, especially when designers are more accustomed to them. However, nondeterminism in the specification usually affects performances of those operational methods that explicitly represent all the possible conformant states. In this paper...
متن کاملFree-Algebra Models for the π-Calculus
The finite π-calculus has an explicit set-theoretic functor-category model that is known to be fully abstract for strong late bisimulation congruence. We characterize this as the initial free algebra for an appropriate set of operations and equations in the enriched Lawvere theories of Plotkin and Power. Thus we obtain a novel algebraic description for models of the π-calculus, and validate an ...
متن کاملA Fully Abstract Model for the π - calculus
This paper provides both a fully abstract (domain-theoretic) model for the π -calculus and a universal (set-theoretic) model for the finite π -calculus with respect to strong late bisimulation and congruence. This is done by considering categorical models, defining a metalanguage for these models, and translating the π -calculus into the metalanguage. A technical novelty of our approach is an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ITA
دوره 14 شماره
صفحات -
تاریخ انتشار 1980