The Physics of Debris Flows

نویسنده

  • Richard M. Iverson
چکیده

Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ;10 m of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alluvial fan facies of the Qazvin Plain: paleoclimate and tectonic implications during Quaternary

The present research focuses on a detailed facies description and interpretation of five alluvial fans of the Qazvin Plain. Beside the tectonic activity that leads to the localization of the fans on the northern margin of the Qazvin Plain, the climate has a significant role in the occurrence of their facies. The alluvial fans are divided into three facies groups: group 1, group 2, and group 3. ...

متن کامل

ارائه یک رابطه تجربی برای تخمین غلظت رسوبات سیلاب واریزه ای (مطالعه موردی: حوضه آبریز جیان جیا واقع در چین)

Debris flow, as a severe geological disaster, causes huge damages in the mountainous areas every year. The peak discharge of flood and the hydraulic roughness of flow are affected by sediment concentration of debris flow. Therefore, the estimation of sediment concentration based on physical characteristics of basin, sediment and precipitation are necessary. The aim of this study is proposing an...

متن کامل

Experimental Study of the Effect of Hydraulic Parameters on Debris Flow Control in Inclined Slit Trapezoidal Check Dams

Check dams are one of the structures used to control debris flows. In this study, in order to evaluate the effect of hydraulic parameters on debris sediment trapping rate by the slit trapezoidal check dams with different angles, and to develop an empirical relation for determination of trapping coefficient of the dam reservoirs, three physical models of the check dams were used. The tests were ...

متن کامل

Sensitivity analysis of geometric and hydraulic parameters on water depth of flood plain in the AbNik River

Transfer of debris flow caused by floods in the river downstream of the mountains leads to several damages every year. Numerous researches have been carried out on the Mountain Rivers the results of which show the importance of performing more researches to control debris flows in the floodplain because of various effective hydraulic-geometric parameters.For this purpose, AbNik Mountain River l...

متن کامل

Transition from debris flow to hyperconcentrated flow in a submarine channel (the Cretaceous Cerro Toro Formation, southern Chile)

Debris flow is an important sedimenttransport mechanism in subaerial and subaqueous environments. Its properties change almost continuously as sediment and water are added to or subtracted from it (Smith and Lowe, 1991; Vallance, 2000). In subaerial environments, debris flows are commonly diluted into hyperconcentrated flows when they encounter a streamflow (Pierson and Costa, 1987; Costa, 1988...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997