MicroRNA-153 Regulates the Acquisition of Gliogenic Competence by Neural Stem Cells
نویسندگان
چکیده
Mammalian neural stem/progenitor cells (NSPCs) sequentially generate neurons and glia during CNS development. Here we identified miRNA-153 (miR-153) as a modulator of the temporal regulation of NSPC differentiation. Overexpression (OE) of miR-153 delayed the onset of astrogliogenesis and maintained NSPCs in an undifferentiated state in vitro and in the developing cortex. The transcription factors nuclear factor I (NFI) A and B, essential regulators of the initiation of gliogenesis, were found to be targets of miR-153. Inhibition of miR-153 in early neurogenic NSPCs induced precocious gliogenesis, whereas NFIA/B overexpression rescued the anti-gliogenic phenotypes induced by miR-153 OE. Our results indicate that miR-mediated fine control of NFIA/B expression is important in the molecular networks that regulate the acquisition of gliogenic competence by NSPCs in the developing CNS.
منابع مشابه
Analysis of induced pluripotent stem cells carrying 22q11.2 deletion
Given the complexity and heterogeneity of the genomic architecture underlying schizophrenia, molecular analyses of these patients with defined and large effect-size genomic defects could provide valuable clues. We established human-induced pluripotent stem cells from two schizophrenia patients with the 22q11.2 deletion (two cell lines from each subject, total of four cell lines) and three contr...
متن کاملNon - canonical post - transcriptional RNA regulation of neural stem cell potential
Adult brain structures and complexity emerge from a single layer of neuroepithelial cells that early during the development give rise to neural stem cells (NSCs). NSCs persist in restricted regions of the postnatal brain where they support neurogenesis throughout life thus allowing brain plasticity and adaptation. NSC regulation involves a precise coordination of intrinsic and extrinsic mechani...
متن کاملMicroRNA-Based Promotion of Human Neuronal Differentiation and Subtype Specification
MicroRNAs are key regulators of neural cell proliferation, differentiation and fate choice. Due to the limited access to human primary neural tissue, the role of microRNAs in human neuronal differentiation remains largely unknown. Here, we use a population of long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) derived from human embryonic stem cells to study the expression an...
متن کاملMicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species
Glioma stem cells (GSCs) exhibit stem cell properties and high resistance to radiotherapy. The main aim of our study was to determine the roles of ROS in radioresistance and stemness of GSCs. We found that microRNA (miR)-153 was down-regulated and its target gene nuclear factor-erythroid 2-related factor-2 (Nrf-2) was up-regulated in GSCs compared with that of non-GSCs glioma cells. The enhance...
متن کاملREST regulates the pool size of the different neural lineages by restricting the generation of neurons and oligodendrocytes from neural stem/progenitor cells.
REST is a master repressor of neuronal genes; however, whether it has any role during nervous system development remains largely unknown. Here, we analyzed systematically the role of REST in embryonic stem cells and multipotent neural stem/progenitor (NS/P) cells, including neurogenic and gliogenic NS/P cells derived from embryonic stem (ES) cells or developing mouse embryos. We showed that RES...
متن کامل