Bulk and Boundary S Matrices for the SU (N ) Chain

نویسندگان

  • Anastasia Doikou
  • Rafael I. Nepomechie
چکیده

We consider both closed and open integrable antiferromagnetic chains constructed with the SU(N )-invariant R matrix. For the closed chain, we extend the analyses of Sutherland and Kulish – Reshetikhin by considering also complex “string” solutions of the Bethe Ansatz equations. Such solutions are essential to describe general multiparticle excited states. We also explicitly determine the SU(N ) quantum numbers of the states. In particular, the model has particle-like excitations in the fundamental representations [k] of SU(N ), with k = 1 , . . . ,N − 1. We directly compute the complete two-particle S matrices for the cases [1] ⊗ [1] and [1] ⊗ [N − 1]. For the open chain with diagonal boundary fields, we show that the transfer matrix has the symmetry SU(l)×SU(N − l)×U(1), as well as a new “duality” symmetry which maps l ↔ N − l. With the help of these symmetries, we compute by means of the Bethe Ansatz for particles of types [1] and [N − 1] the corresponding boundary S matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary scattering in the SU(N) principal chiral model on the half-line with conjugating boundary conditions

We investigate the SU(N) Principal Chiral Model on a half-line with a particular set of boundary conditions (BCs). In previous work these BCs have been shown to correspond to boundary scattering matrices (K-matrices) which are representation conjugating and whose matrix structure corresponds to one of the symmetric spaces SU(N)/SO(N) or SU(N)/Sp(N). Starting from the bulk particle spectrum and ...

متن کامل

ar X iv : h ep - t h / 99 06 06 9 v 2 2 1 Ju l 1 99 9 UMTG – 219 Soliton S matrices for the critical A ( 1 ) N − 1 chain

We compute by Bethe Ansatz both bulk and boundary hole scattering matrices for the critical A (1) N−1 quantum spin chain. The bulk S matrix coincides with the soliton S matrix for the A (1) N−1 Toda field theory with imaginary coupling. We verify our result for the boundary S matrix using a generalization of the Ghoshal-Zamolodchikov boundary crossing relation.

متن کامل

ar X iv : h ep - t h / 99 06 06 9 v 1 9 J un 1 99 9 UMTG – 219 Soliton S matrices for the critical A ( 1 ) N − 1 chain

We compute by Bethe Ansatz both bulk and boundary hole scattering matrices for the critical A (1) N−1 quantum spin chain. The bulk S matrix coincides with the soliton S matrix for the A (1) N−1 Toda field theory with imaginary coupling. We verify our result for the boundary S matrix using a generalization of the Ghoshal-Zamolodchikov boundary crossing relation.

متن کامل

Duality and quantum-algebra symmetry of the A (1) N−1 open spin chain with diagonal boundary fields

We show that the transfer matrix of the A (1) N−1 open spin chain with diagonal boundary fields has the symmetry Uq (SU(l)) × Uq (SU(N − l)) × U(1), as well as a “duality” symmetry which maps l ↔ N − l. We exploit these symmetries to compute exact boundary S matrices in the regime with q real.

متن کامل

Boundary S matrices for the open Hubbard chain with boundary fields

Using the method introduced by Grisaru et al., boundary S matrices for the physical excitations of the open Hubbard chain with boundary fields are studied. In contrast to the open supersymmetric t-J model, the boundary S matrix for the charge excitations depend on the boundary fields though the boundary fields do not break the spin-SU(2) symmetry. E-mail address: [email protected]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998