The pathogenic role of Notch activation in podocytes.

نویسندگان

  • Thiruvur Niranjan
  • Mariana Murea
  • Katalin Susztak
چکیده

Podocytes play a key role in the maintenance of the glomerular filtration barrier. Depletion or dysregulative mechanisms of podocytes can lead to the development of glomerulosclerosis. Signaling pathways that control these processes in podocytes are not fully understood. Recent studies from our and other laboratories found that genes that belong to the Notch pathway are regulated in patients and in animal models of renal disease. Genetic studies performed on mice with conditional expression of active Notch1 protein showed massive albuminuria, glomerulosclerosis, and ultimately renal failure and death of the animals. gamma-Secretase inhibitors and genetic deletion of Notch transcriptional binding partner (Rbpj) protected animals from nephrotic syndrome. Further studies are needed to define whether the activation of Notch pathway in podocytes represents a common pathomechanism in glomerular injury, and its potential to be a therapeutic target for the treatment of chronic kidney disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

For Better or Worse: A Niche for Notch in Parietal Epithelial Cell Activation

Dysfunction and loss of podocytes (glomerular epithelial cells) are the hallmarks of focal segmental glomerulosclerosis (FSGS). In recent years, activation and proliferation of parietal epithelial cells (PECs) have been increasingly appreciated in FSGS. The functional role of PECs in FSGS is still a hotly debated issue. Ueno et al. report that Notch signaling plays a role in orchestrating PEC p...

متن کامل

Ectopic notch activation in developing podocytes causes glomerulosclerosis.

Genetic evidence supports an early role for Notch signaling in the fate of podocytes during glomerular development. Decreased expression of Notch transcriptional targets in developing podocytes after the determination of cell fate suggests that constitutive Notch signaling may oppose podocyte differentiation. This study determined the effects of constitutive Notch signaling on podocyte differen...

متن کامل

Activation of podocyte Notch mediates early Wt1 glomerulopathy.

The Wilms' tumor suppressor gene, WT1, encodes a zinc finger protein that regulates podocyte development and is highly expressed in mature podocytes. Mutations in the WT1 gene are associated with the development of renal failure due to the formation of scar tissue within glomeruli, the mechanisms of which are poorly understood. Here, we used a tamoxifen-based CRE-LoxP system to induce deletion ...

متن کامل

Notch signaling: a common pathway of injury in podocytopathies?

The Notch signaling pathway comprises a family of transmembrane receptors, ligands, negative and positive modifiers, and transcription factors with regulatory activity in multiple cellular processes, including cell fate determination, development, differentiation, proliferation, apoptosis, and regeneration. A critical step in the activation of the Notch receptor is proteolytic cleavage of its i...

متن کامل

Interplay between the Notch and PI3K/Akt pathways in high glucose-induced podocyte apoptosis.

Podocyte apoptosis contributes to the pathogenesis of diabetic nephropathy (DN). However, the mechanisms that mediate high glucose (HG)-induced podocyte apoptosis remain poorly understood. Conditionally immortalized mouse podocytes were cultured in HG medium. A chemical inhibitor or a specific short-hairpin RNA (shRNA) vector was used to inhibit the activation of the Notch pathway and the PI3K/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nephron. Experimental nephrology

دوره 111 4  شماره 

صفحات  -

تاریخ انتشار 2009