A sub-mW pulse-based 5-bit flash ADC with a time-domain fully-digital reference ladder

نویسندگان

  • Nikola Katic
  • Radisav Cojbasic
  • Alexandre Schmid
  • Yusuf Leblebici
چکیده

The concept of time-domain reference-ladder for the implementation of fully-digital flash-ADCs is proposed in this work. The complete reference ladder is implemented using only digital circuits. Based on this concept, a flash ADC is proposed and implemented in this work using digital circuits, one comparator and a customized sample-and-ramp circuit. An unconventional time-to-digital conversion (TDC) technique is introduced which performs the complete conversion within a single clock cycle. The measurement results show that the proposed 5-bit converter achieves an 80 MHz sampling rate while consuming 900 μWof power from the 1.8 V supply voltage. The prototype ADC is developed in a 180 nm standard CMOS technology and achieves the power efficiency of 445 fJ/conversion which is comparable to many existing state-of-the-art flash ADCs. The measured performance is achieved without any design optimization or circuit calibration techniques confirming the promising benefits of the proposed topology. Thanks to the fully-digital structure, the circuit enables a robust and compact implementation which is very convenient for interleaving and beneficial for many potential applications. & 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Power, 3-bit CMOS Pipeline ADC with Reduced Complexity Flash Architecture

A 3-bit, 2-V pipeline analog-to-digital converter has been designed using a modified flash architecture. The developed circuit blocks of the modified flash analog-todigital converter, operating at 135MHz, are a fully differential comparator, a digital-to-analog converter and a sample-and-hold amplifier. The design technique of the N-bit modified flash ADC requires only 2 1) comparators as compa...

متن کامل

A 500-MS/s, 2.0-mW, 8-Bit Subranging ADC with Time-Domain Quantizer

This paper describes a novel energy-efficient, high-speed ADC architecture combining a flash ADC and a TDC. A high conversion rate can be obtained owing to the flash coarse ADC, and low-power dissipation can be attained using the TDC as a fine ADC. Moreover, a capacitive coupled ramp circuit is proposed to achieve high linearity. A test chip was fabricated using 65-nm digital CMOS technology. T...

متن کامل

A 5-bit 4.2-GS/s flash ADC in 0.13-μm CMOS

This paper investigates and analyzes the resistive averaging network and interpolation technique to estimate the power consumption of preamplifier arrays in a flash analog-to-digital converter (ADC). By comparing the relative power consumption of various configurations, flash ADC designers can select the most power efficient architecture when the operation speed and resolution of a flash ADC ar...

متن کامل

Performance Analysis of 4-bit Flash ADC with Different Comparators Designed in 0.18um Technology

This paper concerns the design of Flash type of Analog to Digital Converter (ADC) which is more likely to be used for high quality audio and video signals. It uses resistor ladder logic, comparator and encoder to convert the continuous input signal into binary form. Comparator, encoder circuits are designed using CMOS technology and its output response is obtained to meet the requirements. Comp...

متن کامل

A 12 bit 76MS/s SAR ADC with a Capacitor Merged Technique in 0.18µm CMOS Technology

A new high-resolution and high-speed fully differential Successive Approximation Register (SAR) Analog to Digital Converter (ADC) based on Capacitor Merged Technique is presented in this paper. The main purposes of the proposed idea are to achieve high-resolution and high-speed SAR ADC simultaneously as well. It is noteworthy that, exerting the suggested method the total capacitance and the rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Journal

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2015