Controlled synthesis and tunable properties of ultrathin silica nanotubes through spontaneous polycondensation on polyamine fibrils
نویسندگان
چکیده
This paper describes a facile approach to a biomimetic rapid fabrication of ultrathin silica nanotubes with a highly uniform diameter of 10 nm and inner hollow of around 3 nm. The synthesis is carried out through a spontaneous polycondensation of alkoxysilane on polyamine crystalline fibrils that were conveniently produced from the neutralization of a solution of protonated linear polyethyleneimine (LPEI-H(+)) by alkali compounds. A simple mixing the fibrils with alkoxysilane in aqueous solution allowed for the rapid formation of silica to produce LPEI@silica hybrid nanotubes. These 10-nm nanotubes were hierarchically organized in a mat-like morphology with a typical size of 1-2 micrometers. The subsequent removal of organic LPEI via calcination resulted in silica nanotubes that keep this morphology. The morphology, the structure, the pore properties and the formation mechanism of the silica nanotubes were carefully investigated with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller measurements (BET), and X-ray diffraction (XRD). Detailed studies demonstrated that the formation of the nanotubes depends on the molar ratio of [OH]/[CH2CH2NH] during the neutralization as well as on the basicity of the alkali compound and on the concentration of the silica source. The synthesis of silica nanotubes established here could be easily applied to a fabrication on the kilogram scale. Silica nanotubes that were obtained from the calcination of hybrid nanotubes of LPEI@silica in an N2 atmosphere showed a distinct photoluminescence centered at 540 nm with a maximum excitation wavelength of 320 nm. Furthermore, LPEI@silica hybrid nanotubes were applied to create silica-carbon composite nanotubes by alternative adsorption of ionic polymers and subsequent carbonization.
منابع مشابه
Photoluminescent Lanthanide-Doped Silica Nanotubes: Sol Gel Transcription from Functional Template
’ INTRODUCTION Since the discovery of carbon nanotubes, hollow nanotubes have attracted considerable attention due to their functional significance and potential applications in nanoscale devices, sensors, and energy storage/conversion. In particular, silica nanotubes raise special interest because of their biocompatibility, confined environment as nanocontainers, and feasibility of chemical mo...
متن کاملPreparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process
A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol-gel-processing of silica precursors is used to deposit a silica coating directly on the fiber's surface. The surface localization of the catalyst is achieved either by attaching short-chain polyam...
متن کاملJournal of Physics: Conference Series Biomedical Platforms Based on Composite Nanomaterials and Cellular Toxicity
Carbon nanotubes possess unique chemical, physical, optical, and magnetic properties, which make them suitable for many uses in industrial products and in the field of nanotechnology, including nanomedicine. We describe fluorescent nanocomposites for use in biosensors or nanoelectronics. Then we describe recent results on the issue of cytotoxicity of carbon nanotubes obtained in our labs. Silic...
متن کاملSynthesis and Study of Lidocaine Hydrochloride from Polymeric Film as a Wound Dressing
Introduction: Among various carrier materials capable of drug controlled-release, silica xerogels have been found to be noteworthy for loading and sustaining drug release. These silica xerogels were synthesized through sol-gel technology using Tetraethylortosilicate (TEOS) as a silica precursor. Methods: This study was an experimental basic research, which aimed to characterize the effect of a...
متن کاملSemiconducting monolayer materials as a tunable platform for excitonic solar cells.
The recent advent of two-dimensional monolayer materials with tunable optical properties and high carrier mobility offers renewed opportunities for efficient, ultrathin excitonic solar cells alternative to those based on conjugated polymer and small molecule donors. Using first-principles density functional theory and many-body calculations, we demonstrate that monolayers of hexagonal BN and gr...
متن کامل