High-Order Energy Stable WENO Schemes
نویسندگان
چکیده
A new third-order Energy Stable Weighted Essentially NonOscillatory (ESWENO) finite difference scheme for scalar and vector linear hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing highresolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. A rigorous truncation error analysis is presented showing that the accuracy of the 3rd-order ESWENO scheme is drastically improved if the tuning parameters of the weight functions satisfy certain criteria. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO finite difference scheme of Jiang and Shu in terms of accuracy, while providing essentially nonoscillatory solutions near strong discontinuities.
منابع مشابه
Accelerating high-order WENO schemes using two heterogeneous GPUs
A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...
متن کاملA systematic methodology for constructing high-order energy stable WENO schemes
A third-order Energy Stable Weighted Essentially Non–Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter (AIAA 2008–2876, 2008) was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables “energy stable” modifications for existing WENO s...
متن کاملHigh Order Weighted Essentially Non-Oscillation Schemes for One-Dimensional Detonation Wave Simulations
In this paper, three versions of WENO schemes WENO-JS (JCP 126, 1996), WENO-M (JCP 207, 2005) and WENO-Z (JCP 227, 2008) are used for one-dimensional detonation wave simulations with fifth order characteristic based spatial flux reconstruction. Numerical schemes for solving the system of hyperbolic conversation laws using the ZND analytical solution as initial condition are presented. Numerical...
متن کاملHigh Order Weno Finite Volume Schemes Using Polyharmonic Spline Reconstruction
Polyharmonic splines are utilized in the WENO reconstruction of finite volume discretizations, yielding a numerical method for scalar conservation laws of arbitrary high order. The resulting WENO reconstruction method is, unlike previous WENO schemes using polynomial reconstructions, numerically stable and very flexible. Moreover, due to the theory of polyharmonic splines, optimal reconstructio...
متن کاملENO and WENO Schemes
The weighted essentially nonoscillatory (WENO) schemes, based on the successful essentially nonoscillatory (ENO) schemes with additional advantages, are a popular class of high-order accurate numerical methods for hyperbolic partial differential equations (PDEs) and other convection-dominated problems. The main advantage of such schemes is their capability to achieve arbitrarily high-order form...
متن کاملAn efficient class of WENO schemes with adaptive order
Finite difference WENO schemes have established themselves as very worthy performers for entire classes of applications that involve hyperbolic conservation laws. In this paper we report on two major advances that make finite difference WENO schemes more efficient. The first advance consists of realizing that WENO schemes require us to carry out stencil operations very efficiently. In this pape...
متن کامل