Numerical Solution of Two Asset Jump Diffusion Models for Option Valuation
نویسندگان
چکیده
Under the assumption that two financial assets evolve by correlated finite activity jumps superimposed on correlated Brownian motion, the value of a contingent claim written on these two assets is given by a two dimensional parabolic partial integro-differential equation (PIDE). An implicit, finite difference method is derived in this paper. This approach avoids a dense linear system solution by combining a fixed point iteration scheme with an FFT. The method prices both American and European style contracts independent (under some simple restrictions) of the option payoff and distribution of jumps. Convergence under the localization from the infinite to a finite domain is investigated, as are the theoretical conditions for the stability of the discrete approximation under maximum and von Neumann analysis. The analysis shows that the fixed point iteration is rapidly convergent under typical market parameters. The rapid convergence of the fixed point iteration is verified in some numerical tests. These tests also indicate that the method used to localize the PIDE is inexpensive and easily implemented.
منابع مشابه
Approximate Basket Options Valuation for a Jump-Diffusion Model
In this paper we discuss the approximate basket options valuation for a jump-diffusion model. The underlying asset prices follow some correlated diffusion processes with idiosyncratic and systematic jumps. We suggest a new approximate pricing formula which is the weighted sum of Roger and Shi’s lower bound and the conditional second moment adjustments. We show the approximate value is always wi...
متن کاملOption Valuation in Jump-diffusion Models using the Exponential Runge-Kutta Methods
In this paper, we consider exponential Runge-Kutta methods for the numerical pricing of options. The methods are shown to be an alternative to other existing procedures for the numerical valuation of jump -diffusion models. We show that exponential Runge-Kutta methods give unconditional second order accuracy for European call options under Merton's jump -diffusion model with constant coefficien...
متن کاملTransform Analysis and Asset
In the setting of ‘‘affine’’ jump-diffusion state processes, this paper provides an analytical treatment of a class of transforms, including various Laplace and Fourier transforms as special cases, that allow an analytical treatment of a range of valuation and econometric problems. Example applications include fixed-income pricing models, with a role for intensity-based models of default, as we...
متن کاملOption Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کاملTransform Analysis and Asset Pricing for Affine Jump-diffusions
It may be downloaded, printed and reproduced only for personal or classroom use. Absolutely no downloading or copying may be done for, or on behalf of, any for‐profit commercial firm or other commercial purpose without the explicit permission of the Econometric Society. For this purpose, contact Claire Sashi, General Manager, at [email protected]. 1 In the setting of ''affine'' jump-...
متن کاملClosed formulas for the price and sensitivities of European options under a double exponential jump diffusion model
We derive closed formulas for the prices of European options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by S. Kou in 2002. This author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large...
متن کامل